Radiomics and deep learning approach to the differential diagnosis of parotid gland tumors

无线电技术 医学 鉴别诊断 深度学习 人工智能 放射科 磁共振成像 鉴定(生物学) 机器学习 计算机科学 病理 植物 生物
作者
Emrah Gündüz,Ömer Faruk Alçin,Ahmet Kızılay,Cesare Piazza
出处
期刊:Current Opinion in Otolaryngology & Head and Neck Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:30 (2): 107-113 被引量:5
标识
DOI:10.1097/moo.0000000000000782
摘要

Advances in computer technology and growing expectations from computer-aided systems have led to the evolution of artificial intelligence into subsets, such as deep learning and radiomics, and the use of these systems is revolutionizing modern radiological diagnosis. In this review, artificial intelligence applications developed with radiomics and deep learning methods in the differential diagnosis of parotid gland tumors (PGTs) will be overviewed.The development of artificial intelligence models has opened new scenarios owing to the possibility of assessing features of medical images that usually are not evaluated by physicians. Radiomics and deep learning models come to the forefront in computer-aided diagnosis of medical images, even though their applications in the differential diagnosis of PGTs have been limited because of the scarcity of data sets related to these rare neoplasms. Nevertheless, recent studies have shown that artificial intelligence tools can classify common PGTs with reasonable accuracy.All studies aimed at the differential diagnosis of benign vs. malignant PGTs or the identification of the commonest PGT subtypes were identified, and five studies were found that focused on deep learning-based differential diagnosis of PGTs. Data sets were created in three of these studies with MRI and in two with computed tomography (CT). Additional seven studies were related to radiomics. Of these, four were on MRI-based radiomics, two on CT-based radiomics, and one compared MRI and CT-based radiomics in the same patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhx完成签到 ,获得积分10
1秒前
2秒前
ShuyueXue发布了新的文献求助10
6秒前
xhnmdl完成签到 ,获得积分10
7秒前
7秒前
英俊的铭应助Lignin采纳,获得10
10秒前
共享精神应助小米粒采纳,获得10
10秒前
失眠的可乐完成签到,获得积分10
11秒前
zhang完成签到,获得积分10
11秒前
13秒前
发多多发布了新的文献求助30
13秒前
虚心幼翠完成签到,获得积分20
14秒前
小张呢好完成签到,获得积分10
14秒前
17秒前
科目三应助ShuyueXue采纳,获得10
17秒前
李健应助goinggo采纳,获得10
18秒前
19秒前
Lucas应助walalala采纳,获得30
19秒前
8R60d8应助zxy采纳,获得10
19秒前
万能图书馆应助茹茹采纳,获得10
21秒前
8R60d8应助Denmark采纳,获得10
21秒前
22秒前
怕孤单的听寒完成签到,获得积分10
22秒前
李新宇发布了新的文献求助10
22秒前
寒冷荧荧完成签到 ,获得积分10
22秒前
23秒前
23秒前
24秒前
小米粒发布了新的文献求助10
25秒前
小唐发布了新的文献求助10
26秒前
26秒前
27秒前
David发布了新的文献求助30
27秒前
嗨Honey给嗨Honey的求助进行了留言
27秒前
满意的小雨完成签到 ,获得积分10
27秒前
bgcvb发布了新的文献求助10
28秒前
28秒前
30秒前
小吴发布了新的文献求助10
30秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290615
求助须知:如何正确求助?哪些是违规求助? 2927172
关于积分的说明 8431487
捐赠科研通 2598641
什么是DOI,文献DOI怎么找? 1417978
科研通“疑难数据库(出版商)”最低求助积分说明 659975
邀请新用户注册赠送积分活动 642553