Privacy-Preserving and Low-Latency Federated Learning in Edge Computing

计算机科学 同态加密 Paillier密码体制 加密 节点(物理) 信息隐私 边缘计算 GSM演进的增强数据速率 计算机网络 密文 算法 公钥密码术 计算机安全 人工智能 工程类 混合密码体制 结构工程
作者
He Chunrong,Guiyan Liu,Songtao Guo,Yuanyuan Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (20): 20149-20159 被引量:17
标识
DOI:10.1109/jiot.2022.3171767
摘要

Edge computing has been widely used in recent years for bringing services closer to end users, resulting in faster response for applications. However, the sensitive information that leaves the data owner is at risk of being disclosed because the service provider is generally honest-but-curious. Federated learning (FL) is a popular method for preserving privacy by transferring the model from the edge node to local devices and training on the local data set. Nonetheless, the training parameter that communicates between local mobile devices and the edge node may contain the original data and be guessed by adversaries. In order to address the privacy threats, we propose the PL-FedIPEC scheme in this article, which is a privacy-preserving and low-latency FL method that transmits parameters encrypted with the improved Paillier, a homomorphic encryption algorithm, to protect the privacy of end devices without transmitting data to the edge node. Our method introduces the improved Paillier encryption, which brings a new hyperparameter and previously computes multiple random intermediate values in the key generation phase so that the time for the encryption phase has a significant reduction. With this new algorithm, the time for model training is decreased, and the sensitive information is in ciphertext format and cannot be analyzed. To evaluate the efficiency of our proposed scheme, we conduct extensive experiments and the results validate and demonstrate that our scheme with the improved Paillier algorithm can achieve the same accuracy as the original Paillier algorithm and the baseline FedAVG algorithm. At the same time, our method can save a massive amount of time when training the learning model with various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
可可应助小宏采纳,获得10
2秒前
情怀应助xusuizi采纳,获得10
2秒前
MchemG应助T拐拐采纳,获得10
3秒前
动人的亦云完成签到 ,获得积分10
4秒前
5秒前
lx完成签到 ,获得积分10
5秒前
在写了发布了新的文献求助10
5秒前
赘婿应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得30
6秒前
田様应助科研通管家采纳,获得10
6秒前
圆锥香蕉应助科研通管家采纳,获得20
6秒前
dong应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
知许解夏应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
7秒前
田様应助科研通管家采纳,获得20
7秒前
Ava应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
扎心应助科研通管家采纳,获得10
7秒前
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
9秒前
木风完成签到,获得积分10
9秒前
心灵美的涑完成签到 ,获得积分10
9秒前
9秒前
正直千兰发布了新的文献求助10
9秒前
淡淡夕阳发布了新的文献求助10
10秒前
MM完成签到,获得积分10
10秒前
麦乐迪应助T拐拐采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403