Privacy-Preserving and Low-Latency Federated Learning in Edge Computing

计算机科学 同态加密 Paillier密码体制 加密 节点(物理) 信息隐私 边缘计算 GSM演进的增强数据速率 计算机网络 密文 算法 公钥密码术 计算机安全 人工智能 工程类 混合密码体制 结构工程
作者
Chunrong He,Guiyan Liu,Songtao Guo,Yuanyuan Yang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (20): 20149-20159 被引量:35
标识
DOI:10.1109/jiot.2022.3171767
摘要

Edge computing has been widely used in recent years for bringing services closer to end users, resulting in faster response for applications. However, the sensitive information that leaves the data owner is at risk of being disclosed because the service provider is generally honest-but-curious. Federated learning (FL) is a popular method for preserving privacy by transferring the model from the edge node to local devices and training on the local data set. Nonetheless, the training parameter that communicates between local mobile devices and the edge node may contain the original data and be guessed by adversaries. In order to address the privacy threats, we propose the PL-FedIPEC scheme in this article, which is a privacy-preserving and low-latency FL method that transmits parameters encrypted with the improved Paillier, a homomorphic encryption algorithm, to protect the privacy of end devices without transmitting data to the edge node. Our method introduces the improved Paillier encryption, which brings a new hyperparameter and previously computes multiple random intermediate values in the key generation phase so that the time for the encryption phase has a significant reduction. With this new algorithm, the time for model training is decreased, and the sensitive information is in ciphertext format and cannot be analyzed. To evaluate the efficiency of our proposed scheme, we conduct extensive experiments and the results validate and demonstrate that our scheme with the improved Paillier algorithm can achieve the same accuracy as the original Paillier algorithm and the baseline FedAVG algorithm. At the same time, our method can save a massive amount of time when training the learning model with various settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助温暖的醉蓝采纳,获得10
刚刚
1秒前
peanut发布了新的文献求助10
1秒前
daisy发布了新的文献求助10
1秒前
Hello应助llllllb采纳,获得10
1秒前
2秒前
KM完成签到,获得积分10
2秒前
不一发布了新的文献求助10
3秒前
3秒前
暴躁莹子发布了新的文献求助10
3秒前
李健应助无韶的月亮树采纳,获得30
4秒前
4秒前
佳语妍说发布了新的文献求助10
5秒前
nikonikoni完成签到,获得积分10
5秒前
淡淡烙完成签到,获得积分10
5秒前
Akim应助ANNNNNN采纳,获得10
6秒前
欧皇应助文件撤销了驳回
6秒前
7秒前
小小垚完成签到,获得积分10
7秒前
虚拟的眼神完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助150
7秒前
荧123456发布了新的文献求助10
7秒前
8秒前
8秒前
不一完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
体贴的嵩发布了新的文献求助30
10秒前
10秒前
songhe完成签到,获得积分20
10秒前
10秒前
ll完成签到,获得积分10
10秒前
ZH发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
Serena发布了新的文献求助10
12秒前
llllllb发布了新的文献求助10
13秒前
heima发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5085903
求助须知:如何正确求助?哪些是违规求助? 4301887
关于积分的说明 13405716
捐赠科研通 4126924
什么是DOI,文献DOI怎么找? 2260099
邀请新用户注册赠送积分活动 1264194
关于科研通互助平台的介绍 1198415