The accuracy and learning curve of active and passive dynamic navigation-guided dental implant surgery: An in vitro study

冠状面 导航系统 计算机科学 锥束ct 计算机视觉 人工智能 绝对偏差 生物医学工程 核医学 医学 计算机断层摄影术 数学 外科 放射科 统计
作者
Xiaoyu Wang,Lin Liu,Miao-sheng Guan,Qian Liu,Tong Zhao,Hongbo Li
出处
期刊:Journal of Dentistry [Elsevier]
卷期号:124: 104240-104240 被引量:29
标识
DOI:10.1016/j.jdent.2022.104240
摘要

Infrared dynamic navigation systems can be categorized into active and passive based on whether the surgical instruments can emit or only reflect light. This in vitro study aimed to compare the accuracy of implant placement and the learning curve of both active and passive dynamic navigation systems, using different registration methods.Implants (n = 704) were placed in 64 sets of models and divided into active (Yizhime, DCARER, Suzhou, China) and passive (Iris-Clinic, EPED, Kaohsiung, China) dynamic navigation groups. Both marker point-based registration (M-PBR) and feature point-based registration (F-PBR) were employed for the two groups. Based on preoperative and postoperative cone-beam computed tomography imaging, the coronal, midpoint, apical, and angular deviations were analyzed from 2D and 3D views. The operation time was recorded for each group.The active dynamic navigation group exhibited significantly higher accuracy than the passive dynamic navigation group (angular deviation, 4.13 ± 2.39° versus 4.62 ± 3.32°; coronal global deviation, 1.48 ± 0.60 versus 1.86 ± 1.12 mm; apical global deviation, 1.75 ± 0.81 versus 2.20 ± 1.68 mm, respectively). Significant interaction effects were observed for both registration methods and four quadrants with different dynamic navigation systems. Learning curves for the two dynamic navigation groups approached each other after 12 procedures, and finally converged after 27 procedures.The accuracy of active dynamic navigation system was superior to that of passive dynamic navigation system. Different combinations of dynamic navigation systems, registration methods, and implanted quadrants displayed various interactions.Our findings could provide guidance for surgeons in choosing an appropriate navigation system in various implant surgeries. Furthermore, the time required by surgeons to master the technique was calculated. Nevertheless, there are certain limitations in this in vitro study, and therefore further research is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
duxinyue关注了科研通微信公众号
1秒前
超级宇宙二踢脚关注了科研通微信公众号
1秒前
2秒前
2秒前
3秒前
务实盼海发布了新的文献求助10
3秒前
徐徐徐徐发布了新的文献求助10
4秒前
星晴遇见花海完成签到,获得积分10
4秒前
乐乐应助Rrr采纳,获得10
5秒前
难过鸿涛应助srt采纳,获得10
6秒前
7秒前
卡卡发布了新的文献求助10
7秒前
7秒前
9秒前
Jasper应助刘芸芸采纳,获得10
10秒前
m彬m彬完成签到 ,获得积分10
10秒前
11秒前
自信鑫鹏完成签到,获得积分10
11秒前
HYH完成签到,获得积分10
11秒前
Harish完成签到,获得积分10
12秒前
研友_851KE8发布了新的文献求助10
12秒前
12秒前
一段乐多发布了新的文献求助10
12秒前
12秒前
华仔完成签到,获得积分10
12秒前
刘百慧完成签到,获得积分10
12秒前
12秒前
Wyan发布了新的文献求助80
14秒前
成就映秋发布了新的文献求助30
14秒前
科研通AI2S应助坤坤采纳,获得10
14秒前
整齐芷文完成签到,获得积分10
15秒前
科研通AI5应助小马哥36采纳,获得10
15秒前
灵巧荆发布了新的文献求助10
16秒前
小二郎应助侦察兵采纳,获得10
16秒前
爆米花完成签到 ,获得积分10
16秒前
今后应助Evan123采纳,获得10
16秒前
凤凰之玉完成签到 ,获得积分10
17秒前
shi hui应助冬瓜炖排骨采纳,获得10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794