亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint Modeling of Longitudinal Imaging and Survival Data

马尔科夫蒙特卡洛 计算机科学 主成分分析 贝叶斯概率 贝叶斯推理 推论 比例危险模型 函数主成分分析 人工智能 计量经济学 算法 机器学习 统计 数据挖掘 数学
作者
Kai Kang,Xin Yuan Song
出处
期刊:Journal of Computational and Graphical Statistics [Informa]
卷期号:32 (2): 402-412 被引量:4
标识
DOI:10.1080/10618600.2022.2102027
摘要

AbstractThis article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.Keywords: HD-FPCAImaging dataLongitudinal responseMCMC methodsTime-to-event outcome Supplementary MaterialsIn the supplementary material, Appendix 1 describes the preprocessing of MRI data. Appendix 2 provides the likelihood function in (10). Appendix 3 provides the proof of Theorem 1 in Section 3. Appendices 4 and 5 provides additional numerical results in the simulation and ADNI study, respectively.AcknowledgmentsThe authors are thankful to the editor, the associate editor, and two anonymous reviewers for their valuable comments and suggestions, which have helped improve the article substantially.Additional informationFundingThis research was supported by GRF grants (14301918, 14302220) from the Research Grant Council of the Hong Kong Special Administration Region.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
周亚平完成签到,获得积分10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
思源应助勤奋的琳采纳,获得10
3秒前
5秒前
黄黄发布了新的文献求助20
7秒前
11秒前
等待完成签到,获得积分10
13秒前
Anony发布了新的文献求助10
14秒前
勤奋的琳完成签到,获得积分20
14秒前
keyanzhang完成签到 ,获得积分10
14秒前
15秒前
勤奋的琳发布了新的文献求助10
16秒前
19秒前
浮浮世世发布了新的文献求助10
20秒前
argwew完成签到,获得积分10
30秒前
顾良完成签到 ,获得积分10
30秒前
站岗小狗完成签到 ,获得积分10
30秒前
33秒前
Anony发布了新的文献求助10
33秒前
35秒前
35秒前
Yuanyuan发布了新的文献求助10
35秒前
zyx发布了新的文献求助30
37秒前
yxf发布了新的文献求助10
40秒前
40秒前
童童完成签到,获得积分20
41秒前
Ge完成签到,获得积分10
42秒前
ANG完成签到 ,获得积分10
46秒前
Anony完成签到,获得积分10
47秒前
YifanWang应助Ge采纳,获得30
48秒前
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509270
求助须知:如何正确求助?哪些是违规求助? 4604243
关于积分的说明 14489522
捐赠科研通 4538962
什么是DOI,文献DOI怎么找? 2487229
邀请新用户注册赠送积分活动 1469654
关于科研通互助平台的介绍 1441902