Joint Modeling of Longitudinal Imaging and Survival Data

马尔科夫蒙特卡洛 计算机科学 主成分分析 贝叶斯概率 贝叶斯推理 推论 比例危险模型 函数主成分分析 人工智能 计量经济学 算法 机器学习 统计 数据挖掘 数学
作者
Kai Kang,Xin Yuan Song
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:32 (2): 402-412 被引量:4
标识
DOI:10.1080/10618600.2022.2102027
摘要

AbstractThis article considers a joint modeling framework for simultaneously examining the dynamic pattern of longitudinal and ultrahigh-dimensional images and their effects on the survival of interest. A functional mixed effects model is considered to describe the trajectories of longitudinal images. Then, a high-dimensional functional principal component analysis (HD-FPCA) is adopted to extract the principal eigenimages to reduce the ultrahigh dimensionality of imaging data. Finally, a Cox regression model is used to examine the effects of the longitudinal images and other risk factors on the hazard. A theoretical justification shows that a naive two-stage procedure that separately analyzes each part of the joint model produces biased estimation even if the longitudinal images have no measurement error. We develop a Bayesian joint estimation method coupled with efficient Markov chain Monte Carlo sampling schemes to perform statistical inference for the proposed joint model. A Monte Carlo dynamic prediction procedure is proposed to predict the future survival probabilities of subjects given their historical longitudinal images. The proposed model is assessed through extensive simulation studies and an application to Alzheimer's Disease Neuroimaging Initiative, which turns out to hold the promise of accuracy and possess higher predictive capacity for survival outcome compared with existing methods. Supplementary materials for this article are available online.Keywords: HD-FPCAImaging dataLongitudinal responseMCMC methodsTime-to-event outcome Supplementary MaterialsIn the supplementary material, Appendix 1 describes the preprocessing of MRI data. Appendix 2 provides the likelihood function in (10). Appendix 3 provides the proof of Theorem 1 in Section 3. Appendices 4 and 5 provides additional numerical results in the simulation and ADNI study, respectively.AcknowledgmentsThe authors are thankful to the editor, the associate editor, and two anonymous reviewers for their valuable comments and suggestions, which have helped improve the article substantially.Additional informationFundingThis research was supported by GRF grants (14301918, 14302220) from the Research Grant Council of the Hong Kong Special Administration Region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jasonlee发布了新的文献求助10
3秒前
欣欣完成签到 ,获得积分10
3秒前
暴富的我完成签到,获得积分10
3秒前
大山竹完成签到 ,获得积分10
3秒前
4秒前
慕青应助kaixinjh1234采纳,获得10
4秒前
张先生完成签到 ,获得积分10
4秒前
5秒前
李朝富完成签到,获得积分10
5秒前
7秒前
8秒前
8秒前
二月why发布了新的文献求助10
9秒前
张文涛发布了新的文献求助10
9秒前
纪无施发布了新的文献求助10
10秒前
kuqaq完成签到,获得积分10
11秒前
hkhhh完成签到,获得积分10
11秒前
jasonlee完成签到,获得积分20
12秒前
zly完成签到 ,获得积分10
12秒前
爆米花应助木木采纳,获得10
13秒前
七页禾发布了新的文献求助10
13秒前
huang完成签到,获得积分20
14秒前
15秒前
英姑应助尼莫采纳,获得10
15秒前
15秒前
16秒前
无限猕猴桃应助纪无施采纳,获得20
17秒前
CAOHOU应助科研通管家采纳,获得10
17秒前
zzzzzzzz应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
完美世界应助科研通管家采纳,获得10
17秒前
tzy完成签到,获得积分10
17秒前
ding应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
今后应助科研通管家采纳,获得10
18秒前
18秒前
善学以致用应助ywq采纳,获得10
19秒前
喜悦的妙之完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499