Robust, reliable and quantitative sensing of aqueous arsenic species by Surface-enhanced Raman Spectroscopy: The crucial role of surface silver ions for good analytical practice

银纳米粒子 表面增强拉曼光谱 检出限 砷酸盐 亚砷酸盐 拉曼光谱 水溶液 离子 吸附 化学 分析化学(期刊) 无机化学 材料科学 纳米颗粒 纳米技术 环境化学 色谱法 拉曼散射 有机化学 光学 物理
作者
Xiaochen Lv,Shu Li,Qing Yang,Shao-ying Zhang,Jie Su,Shi‐Bo Cheng,Yongchao Lai,Jing Chen,Jinhua Zhan
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:281: 121600-121600 被引量:8
标识
DOI:10.1016/j.saa.2022.121600
摘要

Arsenic speciation analysis is important for pollution and health risk assessment. Surface-enhanced Raman Spectroscopy (SERS) is supposed to be a promising detection technology for arsenic species owing to the unique fingerprints. However, further application of SERS is hampered by its poor repeatability. Herein, the role of surface silver ions on colloidal Ag was revealed in SERS analysis of arsenic species. Arsenic species were adsorbed on Ag nanoparticles (Ag NPs) driven by surface silver ions and were simultaneously sensed by the SERS "hot spots" generated from the aggregation of Ag NPs. So, the inconsistent SERS activities of Ag NPs synthesized from different batches can be significantly improved by modifying external silver ions onto Ag NPs (AgNPs@Ag+), Specific binding affinity of surface silver ions to arsenic species generated higher sensitivity (detection limit, 4.0 × 10-11 mol L-1 for arsenite, 8.0 × 10-11 mol L-1 for arsenate), wider linear range, faster response, cleaner spectra background and better reproducibility. Batch-to-batch reproducibility was significantly improved with a variation below 3.1%. The method was also demonstrated with drinking and environmental water with adequate recovery and high interference resistance. Our findings displayed good analytical practice of the surface silver ions derived SERS method and its great potential in the rapid detection of hazardous materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panda完成签到 ,获得积分10
1秒前
第五元素完成签到,获得积分10
1秒前
qiqi1111发布了新的文献求助10
2秒前
2秒前
小仙女212完成签到,获得积分10
2秒前
tianzhanggong发布了新的文献求助30
2秒前
3秒前
Tree完成签到 ,获得积分10
3秒前
小仙女212发布了新的文献求助10
6秒前
6秒前
yy应助曹梦梦采纳,获得10
7秒前
7秒前
7秒前
白隐完成签到,获得积分10
8秒前
非而者厚应助Bruce采纳,获得30
9秒前
yyy关闭了yyy文献求助
9秒前
545完成签到,获得积分10
9秒前
10秒前
Stella完成签到,获得积分20
10秒前
小蘑菇应助每天都好困采纳,获得10
11秒前
vivianzhang发布了新的文献求助10
11秒前
z7777777完成签到,获得积分10
12秒前
545发布了新的文献求助10
12秒前
小纪完成签到 ,获得积分10
13秒前
大神水瓶座完成签到,获得积分10
14秒前
14秒前
16秒前
zhongu应助小仙女212采纳,获得10
16秒前
wangyr11完成签到,获得积分10
17秒前
科研通AI5应助Yile采纳,获得10
18秒前
脑洞疼应助莫离采纳,获得10
20秒前
20秒前
CHdengziqi完成签到,获得积分10
20秒前
在水一方应助cc采纳,获得10
20秒前
21秒前
周日不上发条应助婉婉采纳,获得10
22秒前
蝈蝈发布了新的文献求助30
22秒前
lili发布了新的文献求助10
23秒前
24秒前
科研通AI5应助璇彧采纳,获得10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442