亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

IIFDTI: predicting drug–target interactions through interactive and independent features based on attention mechanism

计算机科学 水准点(测量) 编码器 人工智能 机器学习 药物靶点 卷积神经网络 药物发现 机制(生物学) 深度学习 精确性和召回率 人工神经网络 数据挖掘 生物信息学 医学 哲学 大地测量学 认识论 药理学 生物 地理 操作系统
作者
Zhongjian Cheng,Qichang Zhao,Yaohang Li,Jianxin Wang
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:38 (17): 4153-4161 被引量:31
标识
DOI:10.1093/bioinformatics/btac485
摘要

Abstract Motivation Identifying drug–target interactions is a crucial step for drug discovery and design. Traditional biochemical experiments are credible to accurately validate drug–target interactions. However, they are also extremely laborious, time-consuming and expensive. With the collection of more validated biomedical data and the advancement of computing technology, the computational methods based on chemogenomics gradually attract more attention, which guide the experimental verifications. Results In this study, we propose an end-to-end deep learning-based method named IIFDTI to predict drug–target interactions (DTIs) based on independent features of drug–target pairs and interactive features of their substructures. First, the interactive features of substructures between drugs and targets are extracted by the bidirectional encoder–decoder architecture. The independent features of drugs and targets are extracted by the graph neural networks and convolutional neural networks, respectively. Then, all extracted features are fused and inputted into fully connected dense layers in downstream tasks for predicting DTIs. IIFDTI takes into account the independent features of drugs/targets and simulates the interactive features of the substructures from the biological perspective. Multiple experiments show that IIFDTI outperforms the state-of-the-art methods in terms of the area under the receiver operating characteristics curve (AUC), the area under the precision-recall curve (AUPR), precision, and recall on benchmark datasets. In addition, the mapped visualizations of attention weights indicate that IIFDTI has learned the biological knowledge insights, and two case studies illustrate the capabilities of IIFDTI in practical applications. Availability and implementation The data and codes underlying this article are available in Github at https://github.com/czjczj/IIFDTI. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lixia完成签到 ,获得积分10
2秒前
coldstork发布了新的文献求助10
3秒前
7秒前
款解耦完成签到 ,获得积分10
10秒前
21秒前
满意代萱完成签到 ,获得积分10
25秒前
暴躁的听枫完成签到,获得积分10
32秒前
铁臂阿童木完成签到,获得积分10
36秒前
41秒前
47秒前
可爱的函函应助lhr采纳,获得30
49秒前
dd发布了新的文献求助10
51秒前
Omega应助朴素的无招采纳,获得20
52秒前
朴素的无招完成签到,获得积分10
59秒前
Lucas应助爱听歌的灵竹采纳,获得10
59秒前
1分钟前
哭泣的冰淇淋完成签到,获得积分10
1分钟前
1分钟前
1分钟前
dd关闭了dd文献求助
1分钟前
烟花应助wpj采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
小罗发布了新的文献求助10
1分钟前
1分钟前
1分钟前
白桃完成签到 ,获得积分10
1分钟前
辛勤的泽洋完成签到 ,获得积分10
1分钟前
1分钟前
小巧曼安完成签到 ,获得积分10
1分钟前
wpj完成签到,获得积分10
1分钟前
wpj发布了新的文献求助10
1分钟前
1分钟前
潜龙发布了新的文献求助10
1分钟前
杳鸢应助windmill采纳,获得10
1分钟前
1分钟前
丘比特应助科研小白采纳,获得10
1分钟前
2分钟前
小罗完成签到,获得积分10
2分钟前
tylscxf完成签到,获得积分10
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248655
求助须知:如何正确求助?哪些是违规求助? 2892097
关于积分的说明 8269930
捐赠科研通 2560216
什么是DOI,文献DOI怎么找? 1388942
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627810