Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier

无线电技术 慢性阻塞性肺病 人工智能 多层感知器 计算机科学 分类器(UML) 感知器 医学 模式识别(心理学) 机器学习 人工神经网络 内科学
作者
Yingjian Yang,Wei Li,Yingwei Guo,Nanrong Zeng,Shicong Wang,Ziran Chen,Yang Liu,Huai Chen,Wenxin Duan,Xian Li,Wei Zhao,Rongchang Chen,Yan Kang
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:19 (8): 7826-7855 被引量:3
标识
DOI:10.3934/mbe.2022366
摘要

Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
眯眯眼的若颜完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
FashionBoy应助小期待采纳,获得30
3秒前
OK啊01应助Megumi采纳,获得10
3秒前
正直的如凡完成签到,获得积分10
3秒前
分解为发布了新的文献求助200
4秒前
4秒前
5秒前
zzyan完成签到,获得积分10
6秒前
我是老大应助难过的蘑菇采纳,获得30
6秒前
一塔湖图发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
大秀子完成签到,获得积分10
9秒前
搜集达人应助一叶知秋采纳,获得10
9秒前
9秒前
充电宝应助钰c采纳,获得10
9秒前
小草完成签到 ,获得积分10
11秒前
Xiaoxiannv发布了新的文献求助10
11秒前
jhx完成签到,获得积分10
12秒前
禹映安发布了新的文献求助10
13秒前
MingqingFang完成签到,获得积分10
13秒前
太清完成签到 ,获得积分10
14秒前
14秒前
酷波er应助好好学习采纳,获得30
14秒前
贪玩香烟完成签到,获得积分10
15秒前
yatou5651完成签到,获得积分10
15秒前
上官若男应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得30
16秒前
李爱国应助科研通管家采纳,获得30
16秒前
bkagyin应助科研通管家采纳,获得10
16秒前
毛豆应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
17秒前
星辰大海应助科研通管家采纳,获得20
17秒前
17秒前
Leo000007完成签到,获得积分10
18秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295786
求助须知:如何正确求助?哪些是违规求助? 2931649
关于积分的说明 8453323
捐赠科研通 2604317
什么是DOI,文献DOI怎么找? 1421619
科研通“疑难数据库(出版商)”最低求助积分说明 661048
邀请新用户注册赠送积分活动 644016