亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier

无线电技术 慢性阻塞性肺病 人工智能 多层感知器 计算机科学 分类器(UML) 感知器 医学 模式识别(心理学) 机器学习 人工神经网络 内科学
作者
Yingjian Yang,Wei Li,Yingwei Guo,Nanrong Zeng,Shicong Wang,Ziran Chen,Yang Liu,Huai Chen,Wenxin Duan,Xian Li,Wei Zhao,Rongchang Chen,Yan Kang
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:19 (8): 7826-7855 被引量:3
标识
DOI:10.3934/mbe.2022366
摘要

Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangdong完成签到,获得积分10
1秒前
绿树成荫发布了新的文献求助10
1秒前
种下梧桐树完成签到 ,获得积分10
2秒前
13秒前
大个应助绿树成荫采纳,获得10
17秒前
坚定的小蘑菇完成签到 ,获得积分10
17秒前
23秒前
Timelapse发布了新的文献求助10
26秒前
46秒前
50秒前
58秒前
lllll完成签到,获得积分20
1分钟前
1分钟前
Timelapse发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Timelapse发布了新的文献求助10
1分钟前
1分钟前
黑摄会阿Fay完成签到,获得积分10
1分钟前
BowieHuang应助Timelapse采纳,获得10
1分钟前
甜橙完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得20
2分钟前
2分钟前
852应助一碗鱼采纳,获得10
2分钟前
wanci应助andrele采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
一碗鱼发布了新的文献求助10
2分钟前
2分钟前
theo完成签到 ,获得积分10
2分钟前
糕冷草莓完成签到,获得积分10
2分钟前
英姑应助一碗鱼采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772792
求助须知:如何正确求助?哪些是违规求助? 5602544
关于积分的说明 15430087
捐赠科研通 4905627
什么是DOI,文献DOI怎么找? 2639585
邀请新用户注册赠送积分活动 1587478
关于科研通互助平台的介绍 1542423