Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier

无线电技术 慢性阻塞性肺病 人工智能 多层感知器 计算机科学 分类器(UML) 感知器 医学 模式识别(心理学) 机器学习 人工神经网络 内科学
作者
Yingjian Yang,Wei Li,Yingwei Guo,Nanrong Zeng,Shicong Wang,Ziran Chen,Yang Liu,Huai Chen,Wenxin Duan,Xian Li,Wei Zhao,Rongchang Chen,Yan Kang
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:19 (8): 7826-7855 被引量:3
标识
DOI:10.3934/mbe.2022366
摘要

Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simonzenith发布了新的文献求助10
3秒前
12完成签到 ,获得积分10
3秒前
5秒前
CCC完成签到,获得积分10
5秒前
一昂羊完成签到,获得积分20
5秒前
6秒前
852应助撕裂伤口采纳,获得10
6秒前
7秒前
Xc完成签到,获得积分10
8秒前
小困发布了新的文献求助10
8秒前
8秒前
Diss发布了新的文献求助10
9秒前
端庄的火龙果完成签到,获得积分10
9秒前
10秒前
小汉子完成签到,获得积分10
11秒前
11秒前
YAO完成签到 ,获得积分10
12秒前
Annie发布了新的文献求助10
12秒前
16秒前
16秒前
16秒前
机灵哲瀚发布了新的文献求助10
18秒前
科研通AI5应助HQK采纳,获得10
18秒前
琪琪完成签到,获得积分10
19秒前
20秒前
20秒前
可爱的夏青完成签到,获得积分10
20秒前
笨笨善若发布了新的文献求助10
21秒前
瑞_发布了新的文献求助300
22秒前
gege完成签到,获得积分10
22秒前
知己完成签到,获得积分10
25秒前
25秒前
QQQ完成签到,获得积分10
25秒前
段段发布了新的文献求助10
25秒前
ZSW088完成签到,获得积分10
26秒前
27秒前
凡平完成签到,获得积分10
27秒前
完美世界应助沉默的幻枫采纳,获得10
27秒前
28秒前
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772606
求助须知:如何正确求助?哪些是违规求助? 3318115
关于积分的说明 10189081
捐赠科研通 3033061
什么是DOI,文献DOI怎么找? 1664009
邀请新用户注册赠送积分活动 796055
科研通“疑难数据库(出版商)”最低求助积分说明 757171