Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier

无线电技术 慢性阻塞性肺病 人工智能 多层感知器 计算机科学 分类器(UML) 感知器 医学 模式识别(心理学) 机器学习 人工神经网络 内科学
作者
Yingjian Yang,Wei Li,Yingwei Guo,Nanrong Zeng,Shicong Wang,Ziran Chen,Yang Liu,Huai Chen,Wenxin Duan,Xian Li,Wei Zhao,Rongchang Chen,Yan Kang
出处
期刊:Mathematical Biosciences and Engineering [American Institute of Mathematical Sciences]
卷期号:19 (8): 7826-7855 被引量:3
标识
DOI:10.3934/mbe.2022366
摘要

Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助包容柜子采纳,获得10
2秒前
繁星完成签到 ,获得积分10
4秒前
6秒前
7秒前
似乎一场梦完成签到 ,获得积分10
7秒前
dio小面包完成签到 ,获得积分10
8秒前
9秒前
skylee完成签到,获得积分10
9秒前
10秒前
幸福小丸子完成签到,获得积分10
10秒前
困困包发布了新的文献求助10
12秒前
Xjx6519发布了新的文献求助10
13秒前
桐桐应助专注的水壶采纳,获得10
16秒前
斯文败类应助ZeZeZe采纳,获得10
16秒前
17秒前
情怀应助FUn采纳,获得10
18秒前
wanci应助Xjx6519采纳,获得10
19秒前
peng完成签到,获得积分10
20秒前
20秒前
22秒前
22秒前
张玮完成签到,获得积分20
29秒前
科研通AI6应助zhoumaoyuan采纳,获得10
30秒前
科研通AI6应助zhoumaoyuan采纳,获得10
30秒前
刻苦的元风完成签到,获得积分10
32秒前
33秒前
幽默滑板完成签到 ,获得积分10
36秒前
kei完成签到,获得积分10
38秒前
John_sdu完成签到,获得积分10
38秒前
39秒前
40秒前
寻道图强应助kingwill采纳,获得50
41秒前
ding应助张玮采纳,获得10
42秒前
花莫凋零发布了新的文献求助10
45秒前
47秒前
JJJ发布了新的文献求助30
48秒前
虚幻人完成签到,获得积分10
49秒前
面团应助东方越彬采纳,获得10
49秒前
从容的丹南完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566