Lung radiomics features for characterizing and classifying COPD stage based on feature combination strategy and multi-layer perceptron classifier

无线电技术 慢性阻塞性肺病 人工智能 多层感知器 计算机科学 分类器(UML) 感知器 医学 模式识别(心理学) 机器学习 人工神经网络 内科学
作者
Yingjian Yang,Wei Li,Yingwei Guo,Nanrong Zeng,Shicong Wang,Ziran Chen,Yang Liu,Huai Chen,Wenxin Duan,Xian Li,Wei Zhao,Rongchang Chen,Yan Kang
出处
期刊:Mathematical Biosciences and Engineering [Arizona State University]
卷期号:19 (8): 7826-7855 被引量:3
标识
DOI:10.3934/mbe.2022366
摘要

Computed tomography (CT) has been the most effective modality for characterizing and quantifying chronic obstructive pulmonary disease (COPD). Radiomics features extracted from the region of interest in chest CT images have been widely used for lung diseases, but they have not yet been extensively investigated for COPD. Therefore, it is necessary to understand COPD from the lung radiomics features and apply them for COPD diagnostic applications, such as COPD stage classification. Lung radiomics features are used for characterizing and classifying the COPD stage in this paper. First, 19 lung radiomics features are selected from 1316 lung radiomics features per subject by using Lasso. Second, the best performance classifier (multi-layer perceptron classifier, MLP classifier) is determined. Third, two lung radiomics combination features, Radiomics-FIRST and Radiomics-ALL, are constructed based on 19 selected lung radiomics features by using the proposed lung radiomics combination strategy for characterizing the COPD stage. Lastly, the 19 selected lung radiomics features with Radiomics-FIRST/Radiomics-ALL are used to classify the COPD stage based on the best performance classifier. The results show that the classification ability of lung radiomics features based on machine learning (ML) methods is better than that of the chest high-resolution CT (HRCT) images based on classic convolutional neural networks (CNNs). In addition, the classifier performance of the 19 lung radiomics features selected by Lasso is better than that of the 1316 lung radiomics features. The accuracy, precision, recall, F1-score and AUC of the MLP classifier with the 19 selected lung radiomics features and Radiomics-ALL were 0.83, 0.83, 0.83, 0.82 and 0.95, respectively. It is concluded that, for the chest HRCT images, compared to the classic CNN, the ML methods based on lung radiomics features are more suitable and interpretable for COPD classification. In addition, the proposed lung radiomics combination strategy for characterizing the COPD stage effectively improves the classifier performance by 12% overall (accuracy: 3%, precision: 3%, recall: 3%, F1-score: 2% and AUC: 1%).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助kingwill采纳,获得20
1秒前
1秒前
土豆丝P完成签到 ,获得积分10
1秒前
棋士应助粥粥采纳,获得10
2秒前
执执完成签到,获得积分10
2秒前
李可汗发布了新的文献求助10
3秒前
wh完成签到,获得积分10
3秒前
one完成签到 ,获得积分10
3秒前
雾失楼台完成签到,获得积分10
3秒前
liu完成签到,获得积分10
3秒前
4秒前
孙明浩完成签到 ,获得积分10
4秒前
初晨发布了新的文献求助10
5秒前
jhlz5879完成签到,获得积分10
5秒前
5秒前
芋泥脑袋发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
Lucas应助1111111采纳,获得10
6秒前
7秒前
111完成签到,获得积分10
7秒前
涂涂完成签到,获得积分10
7秒前
朴素的士晋完成签到 ,获得积分10
8秒前
sci来来来发布了新的文献求助10
8秒前
8秒前
9秒前
gogoyoco发布了新的文献求助10
9秒前
洞两完成签到,获得积分10
9秒前
巴卡巴卡完成签到,获得积分10
9秒前
10秒前
不吃晚饭完成签到,获得积分10
10秒前
11秒前
AUK完成签到,获得积分10
12秒前
记录吐吐完成签到,获得积分10
12秒前
12秒前
暴龙兽发布了新的文献求助10
12秒前
科研学渣请大神带完成签到,获得积分10
12秒前
13秒前
q792309106发布了新的文献求助10
13秒前
13秒前
踟蹰完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953748
求助须知:如何正确求助?哪些是违规求助? 3499604
关于积分的说明 11096363
捐赠科研通 3230143
什么是DOI,文献DOI怎么找? 1785894
邀请新用户注册赠送积分活动 869656
科研通“疑难数据库(出版商)”最低求助积分说明 801498