Methane decomposition for hydrogen production: A comprehensive review on catalyst selection and reactor systems

甲烷 化石燃料 能量载体 温室气体 分解 可再生能源 蒸汽重整 环境科学 废物管理 工艺工程 制氢 过程(计算) 生化工程 工程类 化学 计算机科学 电气工程 有机化学 操作系统 生物 生态学
作者
Jehangeer Raza,Asif Hussain Khoja,Mustafa Anwar,Faisal Saleem,Salman Raza Naqvi,Rabia Liaquat,Muhammad Hassan,Rahat Javaid,Umair Yaqub Qazi,Brock Lumbers
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:168: 112774-112774 被引量:58
标识
DOI:10.1016/j.rser.2022.112774
摘要

The rampant global energy demand is predominantly met by fossil fuels, resulting in the reduction of their supply and an alarming increase in greenhouse gas (GHG) emissions. These two challenges have fascinated the scientific community in finding solutions to these problems. Hydrogen (H2) as an energy carrier is considered as one of the solutions to address the challenges. Methane (CH4) decomposition is considered a favourable technology for the production of H2 and valuable by-products in the form of carbon nanomaterial. The H2 could be directly used for various applications such as fuel cell technology, transportation fuel, and for the synthesis of chemicals such as ammonia (NH3) and methanol (CH3OH). In the current scenario, demand for COx-free H2 has increased on an annual basis, either in terms of quantity or number of applications and the thermo-catalytic methane decomposition (CDM) process is gaining more attention to produce H2. To improve the H2 yield and quality of the structured carbon by-product, various approaches involving the catalyst and process parameters have been investigated. This review critically discusses various conventional and novel catalyst systems to identify the recent progress for CDM and the way forward. Furthermore, reactor system configurations powered by conventional and renewable energy sources for methane decomposition, as well as their working principles, technical advantages, and limitations are thoroughly discussed. Finally, the various potential applications of carbon nanomaterial are briefly devised.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zyc发布了新的文献求助10
1秒前
2秒前
Owen应助欢呼小蚂蚁采纳,获得10
2秒前
edtaa发布了新的文献求助10
2秒前
反向大笨钟完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
藏在众多孤星之中完成签到,获得积分10
5秒前
Psy_chi发布了新的文献求助10
5秒前
包子完成签到,获得积分10
5秒前
6秒前
科研通AI5应助lslfreedom采纳,获得10
6秒前
6秒前
6秒前
6秒前
丘比特应助ZHIXIANGWENG采纳,获得10
7秒前
orixero应助chen采纳,获得10
7秒前
赘婿应助ZHIXIANGWENG采纳,获得10
7秒前
Ava应助ZHIXIANGWENG采纳,获得10
7秒前
Mizoresuki应助ZHIXIANGWENG采纳,获得10
7秒前
在水一方应助ZHIXIANGWENG采纳,获得10
7秒前
情怀应助ZHIXIANGWENG采纳,获得10
7秒前
无花果应助ZHIXIANGWENG采纳,获得30
7秒前
烟花应助ZHIXIANGWENG采纳,获得10
7秒前
小马甲应助ZHIXIANGWENG采纳,获得10
7秒前
小马甲应助ZHIXIANGWENG采纳,获得10
7秒前
8秒前
9秒前
Zafkiel发布了新的文献求助10
9秒前
可爱的函函应助freebird采纳,获得30
9秒前
xiaosu完成签到,获得积分10
9秒前
小柏学长完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
诚心淇发布了新的文献求助10
10秒前
弯弯完成签到,获得积分10
10秒前
YY发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563968
求助须知:如何正确求助?哪些是违规求助? 3137214
关于积分的说明 9421470
捐赠科研通 2837605
什么是DOI,文献DOI怎么找? 1559926
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717199