计算机科学
二元关系
二元分类
嵌入
二进制数
人工智能
关系(数据库)
机器学习
数据挖掘
理论计算机科学
支持向量机
数学
算术
离散数学
作者
Xiao-Rui Su,Zhu‐Hong You,De-Shuang Huang,Lei Wang,Leon Wong,Boya Ji,Bo-Wei Zhao
出处
期刊:IEEE Transactions on Knowledge and Data Engineering
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:: 1-1
被引量:57
标识
DOI:10.1109/tkde.2022.3154792
摘要
Drug-drug interaction (DDI) plays an important role in drug development and administration. Most of existing network-based computation models regard the DDI prediction as a binary classification problem and generate negative DDI samples randomly, but the binary classification is not in line with the real problem since there are dozens of types of DDI and randomly generating negative samples may introduce false-negative samples since the non-observed facts can be either false or just missing. To address the above limitations, we propose a new framework called KG2ECapsule that explicitly models the multi-relational DDI data based on biomedical knowledge graphs in an end-to-end fashion. It first generates high-quality negative samples based on the average number of tail entities and head entities for each relation to reduce false-negative samples to some extent. KG2ECapsule then refines the representations of entities by recursively propagating the embeddings from the attention-based receptive fields of entities. Empirical results on three biomedical knowledge graphs of different scales show that KG2ECapsule outperforms the state-of-the-art methods consistently in multi-label DDI prediction task and further studies verify the efficacy of both probability-based sampling strategy and non-linear transformation for modeling multi-relational data.
科研通智能强力驱动
Strongly Powered by AbleSci AI