Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality

计算机科学 数据挖掘 聚类分析 样品(材料) 离群值 样本量测定 软件 公制(单位) 质量(理念) 先验与后验 机器学习 人工智能 统计 数学 认识论 哲学 经济 化学 色谱法 程序设计语言 运营管理
作者
Maximilian Sprang,Miguel A. Andrade‐Navarro,Jean-Fred Fontaine
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:23 (S6) 被引量:14
标识
DOI:10.1186/s12859-022-04775-y
摘要

The constant evolving and development of next-generation sequencing techniques lead to high throughput data composed of datasets that include a large number of biological samples. Although a large number of samples are usually experimentally processed by batches, scientific publications are often elusive about this information, which can greatly impact the quality of the samples and confound further statistical analyzes. Because dedicated bioinformatics methods developed to detect unwanted sources of variance in the data can wrongly detect real biological signals, such methods could benefit from using a quality-aware approach.We recently developed statistical guidelines and a machine learning tool to automatically evaluate the quality of a next-generation-sequencing sample. We leveraged this quality assessment to detect and correct batch effects in 12 publicly available RNA-seq datasets with available batch information. We were able to distinguish batches by our quality score and used it to correct for some batch effects in sample clustering. Overall, the correction was evaluated as comparable to or better than the reference method that uses a priori knowledge of the batches (in 10 and 1 datasets of 12, respectively; total = 92%). When coupled to outlier removal, the correction was more often evaluated as better than the reference (comparable or better in 5 and 6 datasets of 12, respectively; total = 92%).In this work, we show the capabilities of our software to detect batches in public RNA-seq datasets from differences in the predicted quality of their samples. We also use these insights to correct the batch effect and observe the relation of sample quality and batch effect. These observations reinforce our expectation that while batch effects do correlate with differences in quality, batch effects also arise from other artifacts and are more suitably corrected statistically in well-designed experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云宝完成签到,获得积分10
刚刚
可爱的函函应助体贴花卷采纳,获得10
2秒前
科研通AI5应助儒雅的蓝天采纳,获得10
3秒前
lm发布了新的文献求助10
3秒前
kyxx2023完成签到,获得积分10
4秒前
无私如松完成签到,获得积分10
5秒前
虚心青亦发布了新的文献求助10
5秒前
6秒前
liziqi完成签到,获得积分10
6秒前
fc关注了科研通微信公众号
6秒前
1027完成签到,获得积分10
7秒前
罗舒完成签到,获得积分10
7秒前
李爱国应助元气糖采纳,获得10
8秒前
8秒前
zz完成签到,获得积分10
8秒前
8秒前
pppppppp完成签到,获得积分10
8秒前
领导范儿应助景宛白采纳,获得30
10秒前
10秒前
xu完成签到,获得积分10
12秒前
12秒前
乐乐应助甜美海云采纳,获得10
12秒前
13秒前
丰富芷雪发布了新的文献求助10
13秒前
14秒前
14秒前
鱼咬羊完成签到,获得积分10
14秒前
hjb发布了新的文献求助10
14秒前
15秒前
hhh发布了新的文献求助10
16秒前
旧城以西发布了新的文献求助10
17秒前
17秒前
chenyunxia发布了新的文献求助10
17秒前
18秒前
7M发布了新的文献求助10
19秒前
zake发布了新的文献求助10
19秒前
19秒前
今后应助云宝采纳,获得10
19秒前
19秒前
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459