Batch effect detection and correction in RNA-seq data using machine-learning-based automated assessment of quality

计算机科学 数据挖掘 聚类分析 样品(材料) 离群值 样本量测定 软件 公制(单位) 质量(理念) 先验与后验 机器学习 人工智能 统计 数学 哲学 化学 运营管理 认识论 色谱法 经济 程序设计语言
作者
Maximilian Sprang,Miguel A. Andrade‐Navarro,Jean-Fred Fontaine
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:23 (S6) 被引量:14
标识
DOI:10.1186/s12859-022-04775-y
摘要

The constant evolving and development of next-generation sequencing techniques lead to high throughput data composed of datasets that include a large number of biological samples. Although a large number of samples are usually experimentally processed by batches, scientific publications are often elusive about this information, which can greatly impact the quality of the samples and confound further statistical analyzes. Because dedicated bioinformatics methods developed to detect unwanted sources of variance in the data can wrongly detect real biological signals, such methods could benefit from using a quality-aware approach.We recently developed statistical guidelines and a machine learning tool to automatically evaluate the quality of a next-generation-sequencing sample. We leveraged this quality assessment to detect and correct batch effects in 12 publicly available RNA-seq datasets with available batch information. We were able to distinguish batches by our quality score and used it to correct for some batch effects in sample clustering. Overall, the correction was evaluated as comparable to or better than the reference method that uses a priori knowledge of the batches (in 10 and 1 datasets of 12, respectively; total = 92%). When coupled to outlier removal, the correction was more often evaluated as better than the reference (comparable or better in 5 and 6 datasets of 12, respectively; total = 92%).In this work, we show the capabilities of our software to detect batches in public RNA-seq datasets from differences in the predicted quality of their samples. We also use these insights to correct the batch effect and observe the relation of sample quality and batch effect. These observations reinforce our expectation that while batch effects do correlate with differences in quality, batch effects also arise from other artifacts and are more suitably corrected statistically in well-designed experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助秋夜白采纳,获得10
1秒前
山阴路没有夏天完成签到,获得积分10
1秒前
晓阳完成签到,获得积分10
1秒前
飞花影完成签到,获得积分10
2秒前
韩邹光完成签到,获得积分10
2秒前
子车茗应助She采纳,获得10
4秒前
子车茗应助She采纳,获得10
4秒前
mind发布了新的文献求助10
5秒前
vn完成签到,获得积分10
6秒前
6秒前
万能图书馆应助Liu采纳,获得10
7秒前
十元完成签到,获得积分10
10秒前
羊羊完成签到 ,获得积分10
12秒前
13秒前
rxx发布了新的文献求助10
13秒前
14秒前
快帮我找找完成签到,获得积分10
15秒前
16秒前
cl完成签到 ,获得积分10
17秒前
爱国完成签到,获得积分10
17秒前
赘婿应助某宁采纳,获得10
17秒前
稻草人完成签到 ,获得积分10
18秒前
yiyi完成签到 ,获得积分10
18秒前
漫步云端发布了新的文献求助10
18秒前
20秒前
李爱国应助义气的雨旋采纳,获得10
20秒前
闪闪梦曼发布了新的文献求助10
20秒前
23秒前
23秒前
搜集达人应助bobo采纳,获得10
24秒前
漫步云端完成签到,获得积分10
26秒前
秋夜白发布了新的文献求助10
26秒前
27秒前
哈哈哈发布了新的文献求助30
29秒前
Miss完成签到,获得积分10
29秒前
搜集达人应助荣枫采纳,获得10
30秒前
sss发布了新的文献求助10
30秒前
高贵逍遥完成签到 ,获得积分10
32秒前
萌新完成签到,获得积分10
32秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187