Detecting fake news on Chinese social media based on hybrid feature fusion method

计算机科学 社会化媒体 卷积神经网络 特征(语言学) 人工智能 图像(数学) 假新闻 文字袋模型 代表(政治) 模式识别(心理学) 机器学习 情报检索 万维网 互联网隐私 哲学 语言学 政治 政治学 法学
作者
Haizhou Wang,Sen Wang,YuHu Han
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:208: 118111-118111 被引量:11
标识
DOI:10.1016/j.eswa.2022.118111
摘要

With the rapid growth of the scale of social media information, it is getting more and more difficult for social media to detect fake news by using manual review. The spread of fake news may misguide the public, cause social panic, and even lead to violence, which could be avoided by using early detection technology to timely identify fake news on social media. Since fake news is often deliberately designed to attract attention, it is difficult for mongers to provide pictures that match the fabricated stories. However, most of existing multi-modal solutions only use the information of images and text, but do not take into account the correlation between them, which limits the effect of model detection effect. In this paper, we proposed a novel Fake News Detection Framework (FNDF) in Sina Weibo based on hybrid feature fusion method. Specifically, a total of 16 features from text, images and users are extracted to distinguish fake news. Moreover, we extract image-text correlation between text and images. Then, a new deep neural network model called Fake News Net (FNN) is built to implement the detection of fake news, which makes use of a pre-training model named Enhanced Representation through Knowledge Integration (ERNIE), a convolution network named Visual Geometry Group (VGG-19), and a Back Propagation (BP) neural network. We validated it on a publicly available dataset, which shows that the F1-score of the FNN model reaches 95.90%, outperforming the state-of-the-art methods by 3.08%. The ablation experiment also proves that the correlation between images and texts increased the F1-score of the model by 3.15%. And the data balancing experiments show that our model still keeps outstanding detection performance when there is less fake news compared to real news, which is closer to the real-world scenario. The research in this paper provides theoretical methods and research ideas for the detection of fake news on social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
泌尿小周发布了新的文献求助10
刚刚
君临发布了新的文献求助10
刚刚
1秒前
2秒前
2秒前
潇洒的诗桃应助漾漾采纳,获得20
2秒前
cccyq发布了新的文献求助10
2秒前
2秒前
脑洞疼应助344061512采纳,获得10
3秒前
zs完成签到 ,获得积分10
3秒前
3秒前
3秒前
Azusa完成签到,获得积分10
4秒前
4秒前
Sunshine发布了新的文献求助10
5秒前
5秒前
6秒前
周舟发布了新的文献求助10
7秒前
7秒前
单薄雁菡发布了新的文献求助10
7秒前
香翔想相完成签到,获得积分10
8秒前
wanci应助殷勤的大米采纳,获得10
8秒前
午后狂睡发布了新的文献求助80
8秒前
yar应助抗体药物偶联采纳,获得10
9秒前
FashionBoy应助111采纳,获得10
9秒前
JiangY发布了新的文献求助10
10秒前
11秒前
小小贺完成签到 ,获得积分10
12秒前
CodeCraft应助Vxfhfdhkcds采纳,获得10
12秒前
ztlooo发布了新的文献求助20
13秒前
344061512完成签到,获得积分10
14秒前
liujunjie完成签到,获得积分10
14秒前
15秒前
七月发布了新的文献求助10
15秒前
16秒前
DLM完成签到 ,获得积分10
16秒前
16秒前
16秒前
16秒前
单薄雁菡完成签到,获得积分10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292679
求助须知:如何正确求助?哪些是违规求助? 2928963
关于积分的说明 8439431
捐赠科研通 2601082
什么是DOI,文献DOI怎么找? 1419525
科研通“疑难数据库(出版商)”最低求助积分说明 660310
邀请新用户注册赠送积分活动 642969