Detecting fake news on Chinese social media based on hybrid feature fusion method

计算机科学 社会化媒体 卷积神经网络 特征(语言学) 人工智能 图像(数学) 假新闻 文字袋模型 代表(政治) 模式识别(心理学) 机器学习 情报检索 万维网 互联网隐私 哲学 语言学 政治 政治学 法学
作者
Haizhou Wang,Sen Wang,YuHu Han
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:208: 118111-118111 被引量:11
标识
DOI:10.1016/j.eswa.2022.118111
摘要

With the rapid growth of the scale of social media information, it is getting more and more difficult for social media to detect fake news by using manual review. The spread of fake news may misguide the public, cause social panic, and even lead to violence, which could be avoided by using early detection technology to timely identify fake news on social media. Since fake news is often deliberately designed to attract attention, it is difficult for mongers to provide pictures that match the fabricated stories. However, most of existing multi-modal solutions only use the information of images and text, but do not take into account the correlation between them, which limits the effect of model detection effect. In this paper, we proposed a novel Fake News Detection Framework (FNDF) in Sina Weibo based on hybrid feature fusion method. Specifically, a total of 16 features from text, images and users are extracted to distinguish fake news. Moreover, we extract image-text correlation between text and images. Then, a new deep neural network model called Fake News Net (FNN) is built to implement the detection of fake news, which makes use of a pre-training model named Enhanced Representation through Knowledge Integration (ERNIE), a convolution network named Visual Geometry Group (VGG-19), and a Back Propagation (BP) neural network. We validated it on a publicly available dataset, which shows that the F1-score of the FNN model reaches 95.90%, outperforming the state-of-the-art methods by 3.08%. The ablation experiment also proves that the correlation between images and texts increased the F1-score of the model by 3.15%. And the data balancing experiments show that our model still keeps outstanding detection performance when there is less fake news compared to real news, which is closer to the real-world scenario. The research in this paper provides theoretical methods and research ideas for the detection of fake news on social networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GuangChe应助鸡蛋布丁采纳,获得10
1秒前
香蕉觅云应助欧阳惜筠采纳,获得10
1秒前
1秒前
ccwu发布了新的文献求助10
1秒前
迷人问兰发布了新的文献求助10
2秒前
杨杰超完成签到,获得积分10
2秒前
许十五完成签到,获得积分10
4秒前
4秒前
dongbei完成签到,获得积分20
6秒前
Lazzaro完成签到,获得积分10
6秒前
6秒前
QQ完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
壮观的擎发布了新的文献求助10
7秒前
夏日天空发布了新的文献求助20
7秒前
ccwu完成签到,获得积分10
8秒前
9秒前
9秒前
xcz发布了新的文献求助10
9秒前
伶俐夏兰完成签到 ,获得积分10
10秒前
10秒前
siyi发布了新的文献求助10
10秒前
万能图书馆应助明理芷云采纳,获得10
11秒前
11秒前
xiaomei完成签到,获得积分20
11秒前
12秒前
香蕉觅云应助mervin采纳,获得10
12秒前
12秒前
zouwenting发布了新的文献求助10
13秒前
swan完成签到 ,获得积分10
14秒前
peng发布了新的文献求助10
15秒前
15秒前
MelinaY发布了新的文献求助10
15秒前
花花完成签到,获得积分10
16秒前
16秒前
16秒前
111发布了新的文献求助10
16秒前
16秒前
plant发布了新的文献求助10
16秒前
zhhha发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954916
求助须知:如何正确求助?哪些是违规求助? 3501031
关于积分的说明 11101644
捐赠科研通 3231451
什么是DOI,文献DOI怎么找? 1786425
邀请新用户注册赠送积分活动 870050
科研通“疑难数据库(出版商)”最低求助积分说明 801785