A machine learning model for predicting surgical intervention in renal colic due to ureteral stone(s) < 5 mm

医学 肾绞痛 肾积水 体质指数 急诊科 输尿管 肌酐 肾结石 外科 泌尿科 内科学 泌尿系统 精神科 病理 替代医学
作者
Miki Haifler,Nir Kleinmann,Rennen Haramaty,Dorit E. Zilberman
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1)
标识
DOI:10.1038/s41598-022-16128-z
摘要

A 75-89% expulsion rate is reported for ureteric stones ≤ 5 mm. We explored which parameters predict justified surgical intervention in cases of pain caused by < 5 mm ureteral stones. We retrospectively reviewed all patients with renal colic caused by ureteral stone < 5 mm admitted to our urology department between 2016 and 2021. Data on age, sex, body mass index, the presence of associated hydronephrosis/stranding on images, ureteral side, stone location, medical history, serum blood count, creatinine, C-reactive protein, and vital signs were obtained upon admission. XGboost (XG), a machine learning model has been implemented to predict the need for intervention. A total of 471 patients (median age 49, 83% males) were reviewed. 74% of the stones were located in the distal ureter. 160 (34%) patients who sustained persistent pain underwent surgical intervention. The operated patients had proximal stone location (56% vs. 10%, p < 0.001) larger stones (4 mm vs. 3 mm, p < 0.001), longer length of stay (3.5 vs. 3 days, p < 0.001) and more emergency-room (ER) visits prior to index admission (2 vs. 1, p = 0.007) compared to those who had no surgical intervention. The model accuracy was 0.8. Larger stone size and proximal location were the most important features in predicting the need for intervention. Altogether with pulse and ER visits, they contributed 73% of the final prediction for each patient. Although a high expulsion rate is expected for ureteral stones < 5 mm, some may be painful and drawn out in spontaneous passage. Decision-making for surgical intervention can be facilitated by the use of the present prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抱小熊睡觉应助杰克采纳,获得10
1秒前
灵长类关注了科研通微信公众号
6秒前
111发布了新的文献求助20
6秒前
7秒前
Owen应助noobmaster采纳,获得10
7秒前
香蕉觅云应助优秀不愁采纳,获得10
7秒前
孙ym完成签到,获得积分10
9秒前
step_stone应助chenmin采纳,获得30
10秒前
10秒前
10秒前
11秒前
kageaki发布了新的文献求助10
12秒前
12秒前
温暖寻雪发布了新的文献求助10
13秒前
研友_VZG7GZ应助苹果寻菱采纳,获得10
15秒前
赘婿应助wu采纳,获得10
15秒前
Priseman发布了新的文献求助10
15秒前
Jasper应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
Billy应助科研通管家采纳,获得30
16秒前
田様应助科研通管家采纳,获得10
16秒前
tuanheqi应助科研通管家采纳,获得30
16秒前
孙ym发布了新的文献求助10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
asdfqwer应助科研通管家采纳,获得10
16秒前
asdfqwer应助科研通管家采纳,获得10
16秒前
打打应助科研通管家采纳,获得10
16秒前
852应助科研通管家采纳,获得10
17秒前
丰知然应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
九九完成签到,获得积分20
17秒前
18秒前
21秒前
九九发布了新的文献求助10
21秒前
hani发布了新的文献求助10
22秒前
26秒前
苹果寻菱完成签到,获得积分10
26秒前
勤奋雅容完成签到,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309840
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512388
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430822
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649478