A machine learning model for predicting surgical intervention in renal colic due to ureteral stone(s) < 5 mm

医学 肾绞痛 肾积水 体质指数 急诊科 输尿管 肌酐 肾结石 外科 泌尿科 内科学 泌尿系统 精神科 病理 替代医学
作者
Miki Haifler,Nir Kleinmann,Rennen Haramaty,Dorit E. Zilberman
出处
期刊:Scientific Reports [Springer Nature]
卷期号:12 (1)
标识
DOI:10.1038/s41598-022-16128-z
摘要

A 75-89% expulsion rate is reported for ureteric stones ≤ 5 mm. We explored which parameters predict justified surgical intervention in cases of pain caused by < 5 mm ureteral stones. We retrospectively reviewed all patients with renal colic caused by ureteral stone < 5 mm admitted to our urology department between 2016 and 2021. Data on age, sex, body mass index, the presence of associated hydronephrosis/stranding on images, ureteral side, stone location, medical history, serum blood count, creatinine, C-reactive protein, and vital signs were obtained upon admission. XGboost (XG), a machine learning model has been implemented to predict the need for intervention. A total of 471 patients (median age 49, 83% males) were reviewed. 74% of the stones were located in the distal ureter. 160 (34%) patients who sustained persistent pain underwent surgical intervention. The operated patients had proximal stone location (56% vs. 10%, p < 0.001) larger stones (4 mm vs. 3 mm, p < 0.001), longer length of stay (3.5 vs. 3 days, p < 0.001) and more emergency-room (ER) visits prior to index admission (2 vs. 1, p = 0.007) compared to those who had no surgical intervention. The model accuracy was 0.8. Larger stone size and proximal location were the most important features in predicting the need for intervention. Altogether with pulse and ER visits, they contributed 73% of the final prediction for each patient. Although a high expulsion rate is expected for ureteral stones < 5 mm, some may be painful and drawn out in spontaneous passage. Decision-making for surgical intervention can be facilitated by the use of the present prediction model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔡继海完成签到,获得积分10
2秒前
vicki发布了新的文献求助10
4秒前
5秒前
wyhx完成签到 ,获得积分10
5秒前
善学以致用应助小九九采纳,获得10
6秒前
6秒前
天天快乐应助学术老6采纳,获得10
7秒前
8秒前
KAOKAO完成签到,获得积分10
9秒前
123456发布了新的文献求助10
10秒前
在荔栀阿完成签到 ,获得积分10
10秒前
vicki完成签到,获得积分20
11秒前
甜美帅哥完成签到 ,获得积分10
13秒前
Lucas应助研友_LNBeyL采纳,获得10
15秒前
二分三分完成签到,获得积分10
16秒前
淡淡的白羊完成签到 ,获得积分10
16秒前
耶耶小豆包完成签到 ,获得积分10
19秒前
19秒前
小二郎应助BINGBING1230采纳,获得10
20秒前
leezh发布了新的文献求助10
21秒前
白鸽鸽完成签到,获得积分10
21秒前
22秒前
chenzihao完成签到,获得积分10
26秒前
小九九发布了新的文献求助10
27秒前
Orange应助小鹏采纳,获得10
27秒前
端庄青雪完成签到,获得积分10
30秒前
上官若男应助科研通管家采纳,获得10
31秒前
31秒前
Ava应助科研通管家采纳,获得10
31秒前
31秒前
排骨年糕发布了新的文献求助10
32秒前
刘璟高完成签到,获得积分10
34秒前
小鹏完成签到,获得积分10
35秒前
38秒前
英俊的铭应助小九九采纳,获得10
38秒前
庸人自扰完成签到,获得积分10
41秒前
小鹏发布了新的文献求助10
42秒前
十一月的阴天完成签到,获得积分10
42秒前
43秒前
流香完成签到,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316