3D reconstruction method for tree seedlings based on point cloud self-registration

点云 三维重建 计算机科学 树(集合论) 匹配(统计) 计算机视觉 人工智能 苗木 点(几何) 集合(抽象数据类型) 数学 统计 生物 数学分析 园艺 程序设计语言 几何学
作者
Tingting Yang,Junhua Ye,Suyin Zhou,Aijun Xu,Jia‐Xin Yin
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:200: 107210-107210 被引量:18
标识
DOI:10.1016/j.compag.2022.107210
摘要

The 3D reconstruction of tree seedlings can help to assess phenotypic architectures, conceive virtual urban landscapes and design computer games. The existing multicamera photograph technology already has the capability to accurately reconstruct 3D models for small scene plants, such as corn and vegetable seedlings. However, the existing plant 3D reconstruction system has several shortcomings, such as its high cost, complicated operation procedure, and unsuitability for seedling trees. Therefore, this paper proposes an autonomous alignment method for seedling point clouds that can realize the low-cost and fast 3D reconstruction of batch seedlings. In this study, we designed a system based on a low-cost Kinect camera and a precision turntable to construct 3D seedling models. A special turntable was adopted to achieve self-registration for the seedling point clouds. It was efficient for us to obtain several 3D seedlings models with only one registration. The system could capture images automatically from different viewpoints and submit these images to a graphic workstation for processing. In our work, we set three fixed views, V2, V3 and V4, to evaluate the cumulative errors caused by multiview matching. It needn’t touch any parts of the seedings to create 3D models at different view by the proposed method. Herein, the large proportions of 0 < mean absolute distance, MD ≤ 0.6 cm and 0 < standard deviation, SD ≤ 0.4 cm, between the reference and the reconstructed point cloud showed that the 3D reconstruction method was accurate, stable and flexible. Additionally, we validated the phenotypic structure measurement, and the height H was highly accurate (R2 > 0.985) when using the 3D reconstruction models of seedlings. Experiments demonstrate that the proposed method has the potential to obtain high-precision 3D reconstruction models and phenotypic parameters for seedlings via low-cost equipment with high-efficiency processing algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ll完成签到 ,获得积分10
刚刚
大肥羊完成签到,获得积分10
1秒前
XuNan完成签到,获得积分10
1秒前
1秒前
不来也不去完成签到 ,获得积分10
1秒前
贪玩鸵鸟发布了新的文献求助20
1秒前
2秒前
2秒前
bjx完成签到,获得积分20
3秒前
大个应助沙糖桔采纳,获得10
3秒前
3秒前
称心的新之完成签到,获得积分10
4秒前
youshower完成签到,获得积分10
4秒前
独特山彤完成签到,获得积分10
4秒前
chen完成签到,获得积分10
5秒前
英姑应助uu采纳,获得10
5秒前
TRY发布了新的文献求助30
5秒前
Yzy发布了新的文献求助10
5秒前
5秒前
太叔明辉完成签到,获得积分10
6秒前
bjx发布了新的文献求助10
6秒前
烟花应助chen采纳,获得10
6秒前
害羞的墨镜完成签到,获得积分10
6秒前
7秒前
aowuao完成签到,获得积分10
7秒前
aikeyab完成签到 ,获得积分10
7秒前
LIANG发布了新的文献求助10
7秒前
yyygc完成签到,获得积分10
7秒前
guozizi发布了新的文献求助10
8秒前
Ludi完成签到,获得积分10
8秒前
viycole完成签到,获得积分10
8秒前
Lukomere发布了新的文献求助10
9秒前
情怀应助LYL采纳,获得10
10秒前
QQ不需要昵称完成签到,获得积分10
10秒前
10秒前
安详晓亦发布了新的文献求助10
11秒前
16完成签到,获得积分10
11秒前
蓝星完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977