3D reconstruction method for tree seedlings based on point cloud self-registration

点云 三维重建 计算机科学 树(集合论) 匹配(统计) 计算机视觉 人工智能 苗木 点(几何) 集合(抽象数据类型) 数学 统计 生物 数学分析 园艺 程序设计语言 几何学
作者
Tingting Yang,Junhua Ye,Suyin Zhou,Aijun Xu,Jia‐Xin Yin
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:200: 107210-107210 被引量:18
标识
DOI:10.1016/j.compag.2022.107210
摘要

The 3D reconstruction of tree seedlings can help to assess phenotypic architectures, conceive virtual urban landscapes and design computer games. The existing multicamera photograph technology already has the capability to accurately reconstruct 3D models for small scene plants, such as corn and vegetable seedlings. However, the existing plant 3D reconstruction system has several shortcomings, such as its high cost, complicated operation procedure, and unsuitability for seedling trees. Therefore, this paper proposes an autonomous alignment method for seedling point clouds that can realize the low-cost and fast 3D reconstruction of batch seedlings. In this study, we designed a system based on a low-cost Kinect camera and a precision turntable to construct 3D seedling models. A special turntable was adopted to achieve self-registration for the seedling point clouds. It was efficient for us to obtain several 3D seedlings models with only one registration. The system could capture images automatically from different viewpoints and submit these images to a graphic workstation for processing. In our work, we set three fixed views, V2, V3 and V4, to evaluate the cumulative errors caused by multiview matching. It needn’t touch any parts of the seedings to create 3D models at different view by the proposed method. Herein, the large proportions of 0 < mean absolute distance, MD ≤ 0.6 cm and 0 < standard deviation, SD ≤ 0.4 cm, between the reference and the reconstructed point cloud showed that the 3D reconstruction method was accurate, stable and flexible. Additionally, we validated the phenotypic structure measurement, and the height H was highly accurate (R2 > 0.985) when using the 3D reconstruction models of seedlings. Experiments demonstrate that the proposed method has the potential to obtain high-precision 3D reconstruction models and phenotypic parameters for seedlings via low-cost equipment with high-efficiency processing algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
勤劳溪灵完成签到,获得积分10
刚刚
刚刚
夏姬宁静发布了新的文献求助10
1秒前
情怀应助无所吊谓采纳,获得10
1秒前
Active完成签到,获得积分10
1秒前
scholars完成签到,获得积分10
2秒前
ohno耶耶耶发布了新的文献求助10
3秒前
SweetyANN发布了新的文献求助10
3秒前
3秒前
niceweiwei发布了新的文献求助10
4秒前
ZG发布了新的文献求助10
4秒前
4秒前
迷路安雁完成签到,获得积分10
5秒前
5秒前
yuery完成签到,获得积分10
5秒前
牛牛牛完成签到,获得积分10
5秒前
A1len完成签到,获得积分10
6秒前
爱写论文的小胡完成签到,获得积分10
6秒前
拉长的问晴完成签到,获得积分10
7秒前
Yukikig完成签到,获得积分10
7秒前
哈哈哈哈哈完成签到,获得积分10
7秒前
tofms完成签到,获得积分10
7秒前
没有蛀牙发布了新的文献求助10
7秒前
Starain完成签到,获得积分10
7秒前
WW完成签到,获得积分10
8秒前
8秒前
8秒前
zhengke924完成签到,获得积分10
9秒前
aaaaa完成签到,获得积分10
9秒前
GERRARD完成签到,获得积分10
9秒前
yuery发布了新的文献求助10
9秒前
街道办事部完成签到,获得积分10
9秒前
我是老大应助懿甜采纳,获得10
10秒前
牛牛牛发布了新的文献求助10
11秒前
OMR123完成签到,获得积分10
11秒前
CZF完成签到 ,获得积分10
11秒前
12秒前
CipherSage应助夏姬宁静采纳,获得10
12秒前
机智访琴完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874