亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Risk-Averse Investment Strategy for MEC Service Provisioning: A Data-Driven Distributionally Robust Solution

计算机科学 服务质量 供应 服务提供商 利润(经济学) 服务器 数学优化 分布式计算 运筹学 计算机网络 服务(商务) 微观经济学 经济 数学 工程类 经济
作者
Xuanheng Li,Ruyi Xiao,Miao Pan,Nan Zhao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2022.3188849
摘要

The emerging Internet-of-Things (IoT) era has stimulated many new computation-intensive applications. To support them, mobile edge computing (MEC) is a promising solution that allows users to offload their heavy computing tasks to nearby edge servers. Taking such computation offloading as the service, application service providers (ASPs) can rent resources from mobile network operators for MEC service provisioning. However, it is challenging for ASPs to determine how many resources to rent at different regions and times due to the uncertain user demand. When making an investment strategy, it is crucial to maximize the profit with the consideration on the quality of service (QoS), where a joint scheduling on both communication and computing resource under the uncertain demand is needed. To deal with the uncertainty, the probability distribution information is usually employed, which, unfortunately, might be hardly obtainable in practice. Therefore, in this paper, we propose a data-driven risk-averse MEC resource investment (DRAI) strategy, where the demand uncertainty issue is particularly addressed. Specifically, we formulate the DRAI strategy into a stochastic optimization problem, which can achieve the expected optimal profit under QoS guarantee statistically from a risk-averse perspective. To solve it, instead of relying on specific distribution models, we construct an ambiguity set based on the statistical characteristics derived from the historical data that contains all possible distributions, and develop a data-driven distributionally robust solution, aiming at achieving the best strategy under the worst case to make it trustworthy. Simulation results illustrate the effectiveness of the proposed DRAI strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助ab采纳,获得10
刚刚
传奇3应助ab采纳,获得10
刚刚
14秒前
TT完成签到,获得积分10
19秒前
山野完成签到 ,获得积分10
19秒前
闪闪蜜粉完成签到 ,获得积分10
38秒前
monair完成签到 ,获得积分10
40秒前
在水一方应助科研通管家采纳,获得10
46秒前
46秒前
小二郎应助科研通管家采纳,获得10
46秒前
46秒前
梦醒了完成签到 ,获得积分10
52秒前
1分钟前
轻松香寒完成签到,获得积分10
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
1分钟前
bkagyin应助Tatotota采纳,获得30
1分钟前
LIU完成签到 ,获得积分10
1分钟前
诗意Sy完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
YE完成签到,获得积分10
2分钟前
Tatotota发布了新的文献求助30
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
2分钟前
小小完成签到,获得积分10
2分钟前
AliEmbark发布了新的文献求助30
2分钟前
带虾的烧麦完成签到,获得积分10
2分钟前
DDJoy完成签到,获得积分10
3分钟前
在水一方应助欣慰宛菡采纳,获得10
3分钟前
科研小白完成签到 ,获得积分10
3分钟前
GLv发布了新的文献求助50
3分钟前
3分钟前
Tatotota完成签到,获得积分20
3分钟前
无心ICE发布了新的文献求助10
3分钟前
luckkit完成签到 ,获得积分10
4分钟前
浮名半生发布了新的文献求助10
4分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963149
求助须知:如何正确求助?哪些是违规求助? 3509051
关于积分的说明 11144989
捐赠科研通 3242106
什么是DOI,文献DOI怎么找? 1791744
邀请新用户注册赠送积分活动 873127
科研通“疑难数据库(出版商)”最低求助积分说明 803622