Risk-Averse Investment Strategy for MEC Service Provisioning: A Data-Driven Distributionally Robust Solution

计算机科学 服务质量 供应 服务提供商 利润(经济学) 服务器 数学优化 分布式计算 运筹学 计算机网络 服务(商务) 微观经济学 经济 数学 工程类 经济
作者
Xuanheng Li,Ruyi Xiao,Miao Pan,Nan Zhao
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2022.3188849
摘要

The emerging Internet-of-Things (IoT) era has stimulated many new computation-intensive applications. To support them, mobile edge computing (MEC) is a promising solution that allows users to offload their heavy computing tasks to nearby edge servers. Taking such computation offloading as the service, application service providers (ASPs) can rent resources from mobile network operators for MEC service provisioning. However, it is challenging for ASPs to determine how many resources to rent at different regions and times due to the uncertain user demand. When making an investment strategy, it is crucial to maximize the profit with the consideration on the quality of service (QoS), where a joint scheduling on both communication and computing resource under the uncertain demand is needed. To deal with the uncertainty, the probability distribution information is usually employed, which, unfortunately, might be hardly obtainable in practice. Therefore, in this paper, we propose a data-driven risk-averse MEC resource investment (DRAI) strategy, where the demand uncertainty issue is particularly addressed. Specifically, we formulate the DRAI strategy into a stochastic optimization problem, which can achieve the expected optimal profit under QoS guarantee statistically from a risk-averse perspective. To solve it, instead of relying on specific distribution models, we construct an ambiguity set based on the statistical characteristics derived from the historical data that contains all possible distributions, and develop a data-driven distributionally robust solution, aiming at achieving the best strategy under the worst case to make it trustworthy. Simulation results illustrate the effectiveness of the proposed DRAI strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助LHL采纳,获得10
刚刚
beyond_xdy完成签到 ,获得积分10
4秒前
WT发布了新的文献求助10
4秒前
5秒前
太渊发布了新的文献求助10
5秒前
winwin完成签到,获得积分10
6秒前
qphys完成签到,获得积分10
8秒前
8秒前
龙井茶完成签到,获得积分10
8秒前
科研通AI2S应助风趣尔蓝采纳,获得30
10秒前
junze发布了新的文献求助10
11秒前
11秒前
12秒前
风中的含羞草完成签到,获得积分10
13秒前
田様应助合适忆之采纳,获得10
15秒前
15秒前
小太阳发布了新的文献求助10
15秒前
ww完成签到,获得积分10
15秒前
renovel发布了新的文献求助10
16秒前
邵辛完成签到,获得积分20
17秒前
18秒前
繁荣的向梦完成签到,获得积分20
20秒前
21秒前
Kalimba完成签到,获得积分10
21秒前
等待洙发布了新的文献求助10
22秒前
LFJ完成签到,获得积分10
23秒前
24秒前
999发布了新的文献求助10
24秒前
oysp发布了新的文献求助10
27秒前
friends完成签到,获得积分10
29秒前
ouyangshi发布了新的文献求助10
29秒前
大模型应助等待洙采纳,获得10
30秒前
科研通AI2S应助康康采纳,获得30
30秒前
sadasdasd完成签到,获得积分10
32秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
cr_joker应助科研通管家采纳,获得30
33秒前
火华完成签到 ,获得积分10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
修仙应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157464
求助须知:如何正确求助?哪些是违规求助? 2808880
关于积分的说明 7878772
捐赠科研通 2467260
什么是DOI,文献DOI怎么找? 1313299
科研通“疑难数据库(出版商)”最低求助积分说明 630393
版权声明 601919