A Novel Hybrid-ARPPO Algorithm for Dynamic Computation Offloading in Edge Computing

计算机科学 马尔可夫决策过程 计算卸载 移动边缘计算 强化学习 动态规划 服务器 分布式计算 最优化问题 边缘计算 带宽(计算) GSM演进的增强数据速率 计算机网络 马尔可夫过程 算法 人工智能 统计 数学
作者
Xuemei Yang,Hong Luo,Yan Sun,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 24065-24078 被引量:5
标识
DOI:10.1109/jiot.2022.3188928
摘要

Applications consisting of a group of modular tasks can be offloaded to the multiaccess edge computing (MEC) for lower delay and energy consumption. In a dynamic MEC system, the fine-grained cooperative and dynamic offloading solution is necessary for the scenario of reusing tasks among devices. Considering the transmission cooperation, shared wireless bandwidth, and changing task queues on devices and edge servers, we formulate a joint offloading optimization problem to minimize the long-term average task execution cost. Although deep reinforcement learning (DRL) is a popular method for the dynamic problem, existing DRL algorithms are not suitable for our problem because of the hybrid discrete-continuous action spaces and constraints among action dimensions. Therefore, we propose a hybrid average reward proximal policy optimization (hybrid-ARPPO) algorithm to jointly optimize the offloading decisions, cooperative transmission ratios, and edge server assignments. First, we decompose our offloading problem into two subproblems. One is a tractable linear programming problem for continuous transmission ratios, and the other is a Markov decision process (MDP) only with discrete actions for offloading decisions and server assignments. Second, we take the expected average reward as the performance measure and deprecate the discount factor, which can reduce the work of tuning algorithms. Third, we design an action mask layer in the policy network of hybrid-ARPPO to filter invalid actions. Extensive experiments show the effectiveness of our hybrid-ARPPO in different system scales and task arrival patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲奇不甜完成签到 ,获得积分10
1秒前
judy发布了新的文献求助10
1秒前
1秒前
3秒前
4秒前
士艳完成签到,获得积分10
4秒前
song发布了新的文献求助30
6秒前
Aurora完成签到,获得积分10
9秒前
上进生发布了新的文献求助10
9秒前
zho应助joy001采纳,获得10
11秒前
hh完成签到,获得积分10
13秒前
16秒前
寒冷荧荧应助BBking采纳,获得10
19秒前
Hello应助起名字好难采纳,获得10
20秒前
CipherSage应助莉亚采纳,获得30
20秒前
21秒前
范月月完成签到 ,获得积分10
21秒前
婷婷应助11采纳,获得10
21秒前
21秒前
康琦琦完成签到 ,获得积分10
22秒前
月弯弯发布了新的文献求助10
22秒前
24秒前
24秒前
上官若男应助哇卡哇卡采纳,获得10
25秒前
28秒前
29秒前
纯真橘子发布了新的文献求助30
29秒前
莉亚完成签到,获得积分10
29秒前
29秒前
30秒前
壮观的涵柏完成签到 ,获得积分10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
酷波er应助科研通管家采纳,获得10
31秒前
云瑾应助科研通管家采纳,获得10
31秒前
pluto应助科研通管家采纳,获得10
31秒前
大模型应助科研通管家采纳,获得10
31秒前
CipherSage应助科研通管家采纳,获得10
31秒前
pluto应助科研通管家采纳,获得10
31秒前
tianzml0应助科研通管家采纳,获得10
31秒前
zhu97应助科研通管家采纳,获得20
32秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815185
关于积分的说明 7907938
捐赠科研通 2474745
什么是DOI,文献DOI怎么找? 1317642
科研通“疑难数据库(出版商)”最低求助积分说明 631915
版权声明 602234