A Novel Hybrid-ARPPO Algorithm for Dynamic Computation Offloading in Edge Computing

计算机科学 马尔可夫决策过程 计算卸载 移动边缘计算 强化学习 动态规划 服务器 分布式计算 最优化问题 边缘计算 带宽(计算) GSM演进的增强数据速率 计算机网络 马尔可夫过程 算法 人工智能 统计 数学
作者
Xuemei Yang,Hong Luo,Yan Sun,Mohsen Guizani
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (23): 24065-24078 被引量:5
标识
DOI:10.1109/jiot.2022.3188928
摘要

Applications consisting of a group of modular tasks can be offloaded to the multiaccess edge computing (MEC) for lower delay and energy consumption. In a dynamic MEC system, the fine-grained cooperative and dynamic offloading solution is necessary for the scenario of reusing tasks among devices. Considering the transmission cooperation, shared wireless bandwidth, and changing task queues on devices and edge servers, we formulate a joint offloading optimization problem to minimize the long-term average task execution cost. Although deep reinforcement learning (DRL) is a popular method for the dynamic problem, existing DRL algorithms are not suitable for our problem because of the hybrid discrete-continuous action spaces and constraints among action dimensions. Therefore, we propose a hybrid average reward proximal policy optimization (hybrid-ARPPO) algorithm to jointly optimize the offloading decisions, cooperative transmission ratios, and edge server assignments. First, we decompose our offloading problem into two subproblems. One is a tractable linear programming problem for continuous transmission ratios, and the other is a Markov decision process (MDP) only with discrete actions for offloading decisions and server assignments. Second, we take the expected average reward as the performance measure and deprecate the discount factor, which can reduce the work of tuning algorithms. Third, we design an action mask layer in the policy network of hybrid-ARPPO to filter invalid actions. Extensive experiments show the effectiveness of our hybrid-ARPPO in different system scales and task arrival patterns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RuiBigHead发布了新的文献求助10
1秒前
2秒前
跳跃的洋葱完成签到 ,获得积分10
2秒前
2秒前
yangjoy完成签到,获得积分10
3秒前
pinklay完成签到 ,获得积分10
3秒前
3秒前
科研通AI5应助ttt采纳,获得10
4秒前
重要问旋完成签到,获得积分10
4秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得30
6秒前
老阎应助科研通管家采纳,获得30
6秒前
姜莹应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
6秒前
ED应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
7秒前
orixero应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
斯可完成签到,获得积分10
7秒前
彭于晏应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066