Citrus greening disease recognition algorithm based on classification network using TRL-GAN

果园 生物 树(集合论) 人工智能 园艺 数学 计算机科学 数学分析
作者
Deqin Xiao,Ruilin Zeng,Youfu Liu,Yigui Huang,Junbing Liu,Jianzhao Feng,Xinglong Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:200: 107206-107206 被引量:19
标识
DOI:10.1016/j.compag.2022.107206
摘要

The monitoring and prevention and control of citrus yellow dragon disease is a significant measure to ensure citrus production. If yellow dragon disease appears in citrus orchards, it will cause root rot, fruit deformation and wilting of fruit trees, which will eventually spread to every fruit tree in the whole orchard and cause the death of fruit trees, so it is very meaningful to detect the symptoms of citrus yellow dragon disease early and take appropriate treatment and prevention measures. Pratically, the orchard owner will remove the corresponding fruit trees as soon as they are found to be infected with Huanglong disease, so that it is extremely problematic to obtain a large number of Huanglong disease leaf data. Meanwhile, due to the uncertainty of the pathological trait distribution of citrus yellow dragon disease leaves and the extreme shortage of data, the convolutional neural network model learned in a small number of samples is not capable of generalization. In order to improve the accuracy and generalization of Citrus Greening Disease recognition algorithm, this paper introduces Texture Reconstruction Loss CycleGAN(TRL-GAN) to generate citrus diseased leaf data in realistic scene to increase the richness of samples, and thus proposes the Recognizing Citrus Greening Based on TRL-GAN(RCG TRL-GAN). This algorithm firstly performs background culling by using the instance segmentation network Mask RCNN for realistic scenes citrus yellow dragon disease mottled, zinc deficiency, magnesium deficiency, leaf veins yellowing and other corresponding symptomatic leaves, then introduces texture reconstruction loss improvement CycleGAN as training and migrates the diseased leaf style to ordinary green leaves for data expansion, and finally uses the expanded dataset to train the convolutional neural network. Experimental results on the constructed dataset of 4516 images (762 mottled, 749 Zn deficient, 737 Mg deficient, 721 Vein yellowing, 783 Diachyma yellowing, 764 green leaves) reveal that TRL-GAN has 13.49% and 1.1% improvement in FID and KID, respectively, relative to the original structure CycleGAN, and has been identified by six citrus yellow dragon disease experts and three vision professionals identify that the fake data generated by TRL-GAN have similarity with the leaf pathological characteristics and real data, and also by using T-SNE technique it is observed that the real data have similar distribution with the generated fake data in two-dimensional plane. Meanwhile, the more outstanding accuracy performance in the classification network is ResNeXt101 with 97.45% accuracy, and the average accuracy of RCG TRL-GAN technique in the recognition of classification network is improved 2.76%. The study proves that the RCG TRL-GAN effectively improves the citrus greening disease phenotype data generation and recognition, and can provide method reference for the expansion and recognition of complex plant disease phenotype images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花开富贵完成签到 ,获得积分10
1秒前
liu发布了新的文献求助10
3秒前
ddn发布了新的文献求助10
6秒前
感动清炎完成签到,获得积分10
7秒前
笨笨完成签到 ,获得积分10
9秒前
噗噗完成签到,获得积分10
11秒前
ddn完成签到,获得积分10
14秒前
15秒前
研友_n0kjPL完成签到,获得积分0
18秒前
allia完成签到 ,获得积分10
21秒前
山猪吃细糠完成签到 ,获得积分10
23秒前
qiqiqiqiqi完成签到 ,获得积分10
24秒前
似风完成签到 ,获得积分10
24秒前
rsdggsrser完成签到 ,获得积分10
25秒前
李子不是杏完成签到 ,获得积分10
25秒前
漏脑之鱼完成签到 ,获得积分10
25秒前
科研通AI6应助Roy采纳,获得10
26秒前
万泉部诗人完成签到,获得积分10
29秒前
科研通AI2S应助十八鱼采纳,获得10
30秒前
30秒前
青山完成签到,获得积分10
32秒前
sunnyqqz完成签到,获得积分10
34秒前
ABC发布了新的文献求助30
37秒前
小粒橙完成签到 ,获得积分10
37秒前
小二郎应助qrt采纳,获得10
39秒前
一天完成签到 ,获得积分10
40秒前
十月完成签到 ,获得积分10
44秒前
46秒前
48秒前
李健应助XU徐采纳,获得10
50秒前
qrt发布了新的文献求助10
51秒前
雨水完成签到,获得积分10
51秒前
哇哈完成签到 ,获得积分10
53秒前
迅速的幻雪完成签到 ,获得积分10
55秒前
小宋完成签到 ,获得积分10
55秒前
酷波er应助勇往直前采纳,获得10
55秒前
1分钟前
tmobiusx发布了新的文献求助10
1分钟前
1分钟前
半岛完成签到,获得积分10
1分钟前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378385
求助须知:如何正确求助?哪些是违规求助? 4502816
关于积分的说明 14014575
捐赠科研通 4411403
什么是DOI,文献DOI怎么找? 2423255
邀请新用户注册赠送积分活动 1416172
关于科研通互助平台的介绍 1393591