Citrus greening disease recognition algorithm based on classification network using TRL-GAN

果园 生物 树(集合论) 人工智能 园艺 数学 计算机科学 数学分析
作者
Deqin Xiao,Ruilin Zeng,Youfu Liu,Yigui Huang,Junbing Liu,Jianzhao Feng,Xinglong Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:200: 107206-107206 被引量:19
标识
DOI:10.1016/j.compag.2022.107206
摘要

The monitoring and prevention and control of citrus yellow dragon disease is a significant measure to ensure citrus production. If yellow dragon disease appears in citrus orchards, it will cause root rot, fruit deformation and wilting of fruit trees, which will eventually spread to every fruit tree in the whole orchard and cause the death of fruit trees, so it is very meaningful to detect the symptoms of citrus yellow dragon disease early and take appropriate treatment and prevention measures. Pratically, the orchard owner will remove the corresponding fruit trees as soon as they are found to be infected with Huanglong disease, so that it is extremely problematic to obtain a large number of Huanglong disease leaf data. Meanwhile, due to the uncertainty of the pathological trait distribution of citrus yellow dragon disease leaves and the extreme shortage of data, the convolutional neural network model learned in a small number of samples is not capable of generalization. In order to improve the accuracy and generalization of Citrus Greening Disease recognition algorithm, this paper introduces Texture Reconstruction Loss CycleGAN(TRL-GAN) to generate citrus diseased leaf data in realistic scene to increase the richness of samples, and thus proposes the Recognizing Citrus Greening Based on TRL-GAN(RCG TRL-GAN). This algorithm firstly performs background culling by using the instance segmentation network Mask RCNN for realistic scenes citrus yellow dragon disease mottled, zinc deficiency, magnesium deficiency, leaf veins yellowing and other corresponding symptomatic leaves, then introduces texture reconstruction loss improvement CycleGAN as training and migrates the diseased leaf style to ordinary green leaves for data expansion, and finally uses the expanded dataset to train the convolutional neural network. Experimental results on the constructed dataset of 4516 images (762 mottled, 749 Zn deficient, 737 Mg deficient, 721 Vein yellowing, 783 Diachyma yellowing, 764 green leaves) reveal that TRL-GAN has 13.49% and 1.1% improvement in FID and KID, respectively, relative to the original structure CycleGAN, and has been identified by six citrus yellow dragon disease experts and three vision professionals identify that the fake data generated by TRL-GAN have similarity with the leaf pathological characteristics and real data, and also by using T-SNE technique it is observed that the real data have similar distribution with the generated fake data in two-dimensional plane. Meanwhile, the more outstanding accuracy performance in the classification network is ResNeXt101 with 97.45% accuracy, and the average accuracy of RCG TRL-GAN technique in the recognition of classification network is improved 2.76%. The study proves that the RCG TRL-GAN effectively improves the citrus greening disease phenotype data generation and recognition, and can provide method reference for the expansion and recognition of complex plant disease phenotype images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
俞儿发布了新的文献求助10
刚刚
1秒前
1秒前
坤坤饿了发布了新的文献求助10
1秒前
忆_完成签到 ,获得积分10
1秒前
Ella发布了新的文献求助10
1秒前
毛绒绒窝铺完成签到,获得积分10
2秒前
2秒前
Li发布了新的文献求助10
3秒前
Owen应助菠萝冰采纳,获得10
3秒前
3秒前
卫尔摩斯发布了新的文献求助10
3秒前
科研通AI6应助复杂的如萱采纳,获得10
3秒前
陈大浩浩发布了新的文献求助10
3秒前
3秒前
4秒前
znn发布了新的文献求助10
4秒前
Jared应助桀庚采纳,获得10
4秒前
olivia发布了新的文献求助10
5秒前
kkkkkk8发布了新的文献求助10
5秒前
5秒前
qiuxuan100完成签到,获得积分10
6秒前
佳jia发布了新的文献求助10
6秒前
上官若男应助居里夫人采纳,获得10
6秒前
爆米花应助星宿采纳,获得10
6秒前
科研通AI6应助聪慧中蓝采纳,获得10
6秒前
科研通AI6应助闪闪的山水采纳,获得10
6秒前
7秒前
jh发布了新的文献求助10
7秒前
充电宝应助Ada采纳,获得10
7秒前
Orange应助gyf采纳,获得10
7秒前
bkagyin应助gyf采纳,获得10
7秒前
冷傲士萧发布了新的文献求助10
7秒前
7秒前
吴语发布了新的文献求助10
7秒前
8秒前
赘婿应助Sli采纳,获得10
8秒前
8秒前
朴素鸽子完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Handbook of Spirituality, Health, and Well-Being 800
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526338
求助须知:如何正确求助?哪些是违规求助? 4616396
关于积分的说明 14553657
捐赠科研通 4554678
什么是DOI,文献DOI怎么找? 2496015
邀请新用户注册赠送积分活动 1476342
关于科研通互助平台的介绍 1447998