亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Citrus greening disease recognition algorithm based on classification network using TRL-GAN

果园 生物 树(集合论) 人工智能 园艺 数学 计算机科学 数学分析
作者
Deqin Xiao,Ruilin Zeng,Youfu Liu,Yigui Huang,Junbing Liu,Jianzhao Feng,Xinglong Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:200: 107206-107206 被引量:19
标识
DOI:10.1016/j.compag.2022.107206
摘要

The monitoring and prevention and control of citrus yellow dragon disease is a significant measure to ensure citrus production. If yellow dragon disease appears in citrus orchards, it will cause root rot, fruit deformation and wilting of fruit trees, which will eventually spread to every fruit tree in the whole orchard and cause the death of fruit trees, so it is very meaningful to detect the symptoms of citrus yellow dragon disease early and take appropriate treatment and prevention measures. Pratically, the orchard owner will remove the corresponding fruit trees as soon as they are found to be infected with Huanglong disease, so that it is extremely problematic to obtain a large number of Huanglong disease leaf data. Meanwhile, due to the uncertainty of the pathological trait distribution of citrus yellow dragon disease leaves and the extreme shortage of data, the convolutional neural network model learned in a small number of samples is not capable of generalization. In order to improve the accuracy and generalization of Citrus Greening Disease recognition algorithm, this paper introduces Texture Reconstruction Loss CycleGAN(TRL-GAN) to generate citrus diseased leaf data in realistic scene to increase the richness of samples, and thus proposes the Recognizing Citrus Greening Based on TRL-GAN(RCG TRL-GAN). This algorithm firstly performs background culling by using the instance segmentation network Mask RCNN for realistic scenes citrus yellow dragon disease mottled, zinc deficiency, magnesium deficiency, leaf veins yellowing and other corresponding symptomatic leaves, then introduces texture reconstruction loss improvement CycleGAN as training and migrates the diseased leaf style to ordinary green leaves for data expansion, and finally uses the expanded dataset to train the convolutional neural network. Experimental results on the constructed dataset of 4516 images (762 mottled, 749 Zn deficient, 737 Mg deficient, 721 Vein yellowing, 783 Diachyma yellowing, 764 green leaves) reveal that TRL-GAN has 13.49% and 1.1% improvement in FID and KID, respectively, relative to the original structure CycleGAN, and has been identified by six citrus yellow dragon disease experts and three vision professionals identify that the fake data generated by TRL-GAN have similarity with the leaf pathological characteristics and real data, and also by using T-SNE technique it is observed that the real data have similar distribution with the generated fake data in two-dimensional plane. Meanwhile, the more outstanding accuracy performance in the classification network is ResNeXt101 with 97.45% accuracy, and the average accuracy of RCG TRL-GAN technique in the recognition of classification network is improved 2.76%. The study proves that the RCG TRL-GAN effectively improves the citrus greening disease phenotype data generation and recognition, and can provide method reference for the expansion and recognition of complex plant disease phenotype images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助mmyhn采纳,获得50
5秒前
杳鸢应助mmyhn采纳,获得50
33秒前
经冰夏完成签到 ,获得积分10
43秒前
53秒前
janice发布了新的文献求助10
57秒前
janice完成签到,获得积分10
1分钟前
温暖南莲应助janice采纳,获得20
1分钟前
woyufengtian完成签到,获得积分10
1分钟前
银色的喵咪应助mmyhn采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得30
3分钟前
俺爱SCI完成签到 ,获得积分10
3分钟前
3分钟前
啊是是是发布了新的文献求助10
3分钟前
bingshuaizhao发布了新的文献求助10
3分钟前
3分钟前
3分钟前
隐形耷发布了新的文献求助10
3分钟前
zpli完成签到 ,获得积分10
3分钟前
赘婿应助Langsam采纳,获得30
3分钟前
花开发布了新的文献求助10
3分钟前
慕青应助隐形耷采纳,获得10
4分钟前
科研通AI2S应助花开采纳,获得10
4分钟前
4分钟前
bingshuaizhao完成签到,获得积分10
4分钟前
Langsam发布了新的文献求助30
4分钟前
花开完成签到,获得积分20
4分钟前
姚老表完成签到,获得积分10
4分钟前
mmyhn完成签到,获得积分10
5分钟前
阳阳阳完成签到 ,获得积分10
5分钟前
所所应助科研通管家采纳,获得30
5分钟前
桐桐应助科研通管家采纳,获得10
5分钟前
云飞扬完成签到 ,获得积分10
5分钟前
xj发布了新的文献求助10
5分钟前
CATH完成签到 ,获得积分10
5分钟前
zqq完成签到,获得积分0
6分钟前
小马甲应助YUYUYU采纳,获得10
6分钟前
Arthur完成签到 ,获得积分10
6分钟前
河豚完成签到 ,获得积分10
6分钟前
早晚完成签到 ,获得积分10
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801908
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748