已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Citrus greening disease recognition algorithm based on classification network using TRL-GAN

果园 生物 树(集合论) 人工智能 园艺 数学 计算机科学 数学分析
作者
Deqin Xiao,Ruilin Zeng,Youfu Liu,Yigui Huang,Junbing Liu,Jianzhao Feng,Xinglong Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:200: 107206-107206 被引量:19
标识
DOI:10.1016/j.compag.2022.107206
摘要

The monitoring and prevention and control of citrus yellow dragon disease is a significant measure to ensure citrus production. If yellow dragon disease appears in citrus orchards, it will cause root rot, fruit deformation and wilting of fruit trees, which will eventually spread to every fruit tree in the whole orchard and cause the death of fruit trees, so it is very meaningful to detect the symptoms of citrus yellow dragon disease early and take appropriate treatment and prevention measures. Pratically, the orchard owner will remove the corresponding fruit trees as soon as they are found to be infected with Huanglong disease, so that it is extremely problematic to obtain a large number of Huanglong disease leaf data. Meanwhile, due to the uncertainty of the pathological trait distribution of citrus yellow dragon disease leaves and the extreme shortage of data, the convolutional neural network model learned in a small number of samples is not capable of generalization. In order to improve the accuracy and generalization of Citrus Greening Disease recognition algorithm, this paper introduces Texture Reconstruction Loss CycleGAN(TRL-GAN) to generate citrus diseased leaf data in realistic scene to increase the richness of samples, and thus proposes the Recognizing Citrus Greening Based on TRL-GAN(RCG TRL-GAN). This algorithm firstly performs background culling by using the instance segmentation network Mask RCNN for realistic scenes citrus yellow dragon disease mottled, zinc deficiency, magnesium deficiency, leaf veins yellowing and other corresponding symptomatic leaves, then introduces texture reconstruction loss improvement CycleGAN as training and migrates the diseased leaf style to ordinary green leaves for data expansion, and finally uses the expanded dataset to train the convolutional neural network. Experimental results on the constructed dataset of 4516 images (762 mottled, 749 Zn deficient, 737 Mg deficient, 721 Vein yellowing, 783 Diachyma yellowing, 764 green leaves) reveal that TRL-GAN has 13.49% and 1.1% improvement in FID and KID, respectively, relative to the original structure CycleGAN, and has been identified by six citrus yellow dragon disease experts and three vision professionals identify that the fake data generated by TRL-GAN have similarity with the leaf pathological characteristics and real data, and also by using T-SNE technique it is observed that the real data have similar distribution with the generated fake data in two-dimensional plane. Meanwhile, the more outstanding accuracy performance in the classification network is ResNeXt101 with 97.45% accuracy, and the average accuracy of RCG TRL-GAN technique in the recognition of classification network is improved 2.76%. The study proves that the RCG TRL-GAN effectively improves the citrus greening disease phenotype data generation and recognition, and can provide method reference for the expansion and recognition of complex plant disease phenotype images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流年发布了新的文献求助10
2秒前
2秒前
哈哈哈哈哈应助波波采纳,获得10
3秒前
momo123完成签到 ,获得积分10
7秒前
8秒前
9秒前
Viviwuyx发布了新的文献求助10
9秒前
淙淙柔水完成签到,获得积分0
11秒前
秀儿发布了新的文献求助30
11秒前
chris发布了新的文献求助10
12秒前
司空晓瑶发布了新的文献求助20
14秒前
大橙子完成签到,获得积分10
14秒前
15秒前
15秒前
秀丽的冷松完成签到,获得积分10
17秒前
领导范儿应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
科目三应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
19秒前
zzzyyy应助科研通管家采纳,获得10
19秒前
Koalas应助Zack采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得30
19秒前
所所应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
20秒前
苏su完成签到 ,获得积分10
21秒前
qh发布了新的文献求助10
22秒前
22秒前
23秒前
兴奋雁蓉发布了新的文献求助10
23秒前
八角完成签到,获得积分10
25秒前
25秒前
qiandi完成签到,获得积分10
28秒前
zxm666发布了新的文献求助30
30秒前
小马甲应助鱼丸枝桠采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052152
求助须知:如何正确求助?哪些是违规求助? 4279258
关于积分的说明 13339106
捐赠科研通 4094654
什么是DOI,文献DOI怎么找? 2241226
邀请新用户注册赠送积分活动 1247560
关于科研通互助平台的介绍 1176665