清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Citrus greening disease recognition algorithm based on classification network using TRL-GAN

果园 生物 树(集合论) 人工智能 园艺 数学 计算机科学 数学分析
作者
Deqin Xiao,Ruilin Zeng,Youfu Liu,Yigui Huang,Junbing Liu,Jianzhao Feng,Xinglong Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:200: 107206-107206 被引量:19
标识
DOI:10.1016/j.compag.2022.107206
摘要

The monitoring and prevention and control of citrus yellow dragon disease is a significant measure to ensure citrus production. If yellow dragon disease appears in citrus orchards, it will cause root rot, fruit deformation and wilting of fruit trees, which will eventually spread to every fruit tree in the whole orchard and cause the death of fruit trees, so it is very meaningful to detect the symptoms of citrus yellow dragon disease early and take appropriate treatment and prevention measures. Pratically, the orchard owner will remove the corresponding fruit trees as soon as they are found to be infected with Huanglong disease, so that it is extremely problematic to obtain a large number of Huanglong disease leaf data. Meanwhile, due to the uncertainty of the pathological trait distribution of citrus yellow dragon disease leaves and the extreme shortage of data, the convolutional neural network model learned in a small number of samples is not capable of generalization. In order to improve the accuracy and generalization of Citrus Greening Disease recognition algorithm, this paper introduces Texture Reconstruction Loss CycleGAN(TRL-GAN) to generate citrus diseased leaf data in realistic scene to increase the richness of samples, and thus proposes the Recognizing Citrus Greening Based on TRL-GAN(RCG TRL-GAN). This algorithm firstly performs background culling by using the instance segmentation network Mask RCNN for realistic scenes citrus yellow dragon disease mottled, zinc deficiency, magnesium deficiency, leaf veins yellowing and other corresponding symptomatic leaves, then introduces texture reconstruction loss improvement CycleGAN as training and migrates the diseased leaf style to ordinary green leaves for data expansion, and finally uses the expanded dataset to train the convolutional neural network. Experimental results on the constructed dataset of 4516 images (762 mottled, 749 Zn deficient, 737 Mg deficient, 721 Vein yellowing, 783 Diachyma yellowing, 764 green leaves) reveal that TRL-GAN has 13.49% and 1.1% improvement in FID and KID, respectively, relative to the original structure CycleGAN, and has been identified by six citrus yellow dragon disease experts and three vision professionals identify that the fake data generated by TRL-GAN have similarity with the leaf pathological characteristics and real data, and also by using T-SNE technique it is observed that the real data have similar distribution with the generated fake data in two-dimensional plane. Meanwhile, the more outstanding accuracy performance in the classification network is ResNeXt101 with 97.45% accuracy, and the average accuracy of RCG TRL-GAN technique in the recognition of classification network is improved 2.76%. The study proves that the RCG TRL-GAN effectively improves the citrus greening disease phenotype data generation and recognition, and can provide method reference for the expansion and recognition of complex plant disease phenotype images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助George采纳,获得10
4秒前
Zhahu完成签到 ,获得积分10
28秒前
吴静完成签到 ,获得积分10
34秒前
43秒前
daomaihu完成签到,获得积分10
1分钟前
ArkZ完成签到 ,获得积分0
1分钟前
dx完成签到,获得积分10
1分钟前
1分钟前
debu9完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6应助chengshu666采纳,获得10
1分钟前
1分钟前
DHW1703701完成签到,获得积分10
2分钟前
开朗艳一完成签到,获得积分10
2分钟前
游01完成签到 ,获得积分10
2分钟前
影子完成签到,获得积分10
2分钟前
regene完成签到,获得积分10
2分钟前
2分钟前
2分钟前
lingling完成签到 ,获得积分10
3分钟前
俊逸吐司完成签到 ,获得积分10
3分钟前
huanghe完成签到,获得积分10
3分钟前
久久完成签到 ,获得积分10
3分钟前
chengshu666发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助阿米尔盼盼采纳,获得10
3分钟前
耶啵耶啵完成签到 ,获得积分10
3分钟前
Syan完成签到,获得积分10
4分钟前
喜喜完成签到,获得积分10
4分钟前
美满惜寒完成签到,获得积分10
4分钟前
cityhunter7777完成签到,获得积分10
4分钟前
朝夕之晖完成签到,获得积分10
4分钟前
BMG完成签到,获得积分10
4分钟前
洋芋饭饭完成签到,获得积分10
4分钟前
真的OK完成签到,获得积分0
4分钟前
runtang完成签到,获得积分10
4分钟前
BowieHuang完成签到,获得积分0
4分钟前
张浩林完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5555113
求助须知:如何正确求助?哪些是违规求助? 4639649
关于积分的说明 14656503
捐赠科研通 4581619
什么是DOI,文献DOI怎么找? 2512901
邀请新用户注册赠送积分活动 1487587
关于科研通互助平台的介绍 1458599