Spatio–Temporal–Spectral Collaborative Learning for Spatio–Temporal Fusion with Land Cover Changes

计算机科学 卷积神经网络 加权 人工智能 土地覆盖 稳健性(进化) 模式识别(心理学) 可解释性 遥感 土地利用 地理 放射科 工程类 土木工程 基因 医学 化学 生物化学
作者
Xiangchao Meng,Qiang Liu,Feng Shao,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:20
标识
DOI:10.1109/tgrs.2022.3185459
摘要

Spatio-temporal fusion by combining the complementary spatial and temporal advantages of multi-source remote sensing images to obtain time-series high spatial resolution images is highly desirable in monitoring surface dynamics. Currently, deep learning (DL)-based fusion methods have received extensive attention. However, existing DL-based spatio-temporal fusion methods are generally limited in fusing the images with land cover changes. In this paper, we propose a spatio-temporal-spectral collaborative learning framework for spatio-temporal fusion to alleviate this problem. Specifically, the proposed method integrates the convolutional neural network and recurrent neural network into a unified framework, consisting of three sub-networks: multi-scale siamese convolutional neural network, multi-layer convolutional recurrent neural network, and adaptive weighting fusion network. The multi-scale siamese convolutional neural network has a flexible weight-sharing network to extract multi-scale spatial-spectral features from multi-source remote sensing images. The multi-layer convolutional recurrent neural network is constructed on the convolutional long-short term memory units to comprehensively learn the land cover changes by spatial, spectral, and temporal joint features. The adaptive weighting fusion network with a spatio-temporal-spectral change loss is proposed to further improve the interpretability and robustness. The experiments were performed on the publicly available benchmark datasets featured by phenology and land cover type changes, respectively. The experimental results demonstrated the competitive performance of the proposed method than other state-of-the-art fusion methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
梧桐树发布了新的文献求助10
2秒前
Zzzyy发布了新的文献求助30
2秒前
2秒前
Jennie完成签到,获得积分10
2秒前
梦鱼完成签到,获得积分10
2秒前
诺诺完成签到,获得积分10
2秒前
桐桐应助努力的蜗牛采纳,获得10
4秒前
爱笑的千寻完成签到,获得积分10
4秒前
科研通AI6.1应助蛰伏采纳,获得10
5秒前
6秒前
7秒前
春茶完成签到,获得积分10
7秒前
可以赐给小马青基嘛完成签到,获得积分10
7秒前
希望天下0贩的0应助小明采纳,获得10
7秒前
852应助曾经山柏采纳,获得20
7秒前
7秒前
8秒前
肖旻发布了新的文献求助10
8秒前
9秒前
英姑应助gugu采纳,获得20
9秒前
sing完成签到,获得积分10
9秒前
小不点点发布了新的文献求助10
10秒前
10秒前
11秒前
必胜完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
开心凌柏完成签到,获得积分10
13秒前
13秒前
lie关闭了lie文献求助
13秒前
春茶发布了新的文献求助10
13秒前
科研民工完成签到,获得积分10
14秒前
14秒前
anti1988完成签到,获得积分10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
yan122发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133