Spatio–Temporal–Spectral Collaborative Learning for Spatio–Temporal Fusion with Land Cover Changes

计算机科学 卷积神经网络 加权 人工智能 土地覆盖 稳健性(进化) 模式识别(心理学) 可解释性 遥感 土地利用 地理 医学 生物化学 化学 土木工程 基因 工程类 放射科
作者
Xiangchao Meng,Qiang Liu,Feng Shao,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:20
标识
DOI:10.1109/tgrs.2022.3185459
摘要

Spatio-temporal fusion by combining the complementary spatial and temporal advantages of multi-source remote sensing images to obtain time-series high spatial resolution images is highly desirable in monitoring surface dynamics. Currently, deep learning (DL)-based fusion methods have received extensive attention. However, existing DL-based spatio-temporal fusion methods are generally limited in fusing the images with land cover changes. In this paper, we propose a spatio-temporal-spectral collaborative learning framework for spatio-temporal fusion to alleviate this problem. Specifically, the proposed method integrates the convolutional neural network and recurrent neural network into a unified framework, consisting of three sub-networks: multi-scale siamese convolutional neural network, multi-layer convolutional recurrent neural network, and adaptive weighting fusion network. The multi-scale siamese convolutional neural network has a flexible weight-sharing network to extract multi-scale spatial-spectral features from multi-source remote sensing images. The multi-layer convolutional recurrent neural network is constructed on the convolutional long-short term memory units to comprehensively learn the land cover changes by spatial, spectral, and temporal joint features. The adaptive weighting fusion network with a spatio-temporal-spectral change loss is proposed to further improve the interpretability and robustness. The experiments were performed on the publicly available benchmark datasets featured by phenology and land cover type changes, respectively. The experimental results demonstrated the competitive performance of the proposed method than other state-of-the-art fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古月发布了新的文献求助10
1秒前
2秒前
情怀应助如意的听云采纳,获得10
2秒前
4秒前
无花果应助念姬采纳,获得10
4秒前
趣多多发布了新的文献求助10
5秒前
David发布了新的文献求助10
6秒前
姜风柏华完成签到,获得积分10
6秒前
8秒前
xhh完成签到 ,获得积分10
8秒前
舒服的微笑完成签到,获得积分10
9秒前
13秒前
李爱国应助LLL采纳,获得10
15秒前
lumia发布了新的文献求助10
15秒前
奶牛在吃豆完成签到,获得积分10
17秒前
orixero应助香蕉吃鱼采纳,获得10
17秒前
钟于发布了新的文献求助10
18秒前
地表飞猪应助眉间尺采纳,获得10
18秒前
18秒前
wyh完成签到,获得积分10
19秒前
19秒前
21秒前
21秒前
派大星发布了新的文献求助10
22秒前
烟花应助lumia采纳,获得10
23秒前
24秒前
含蓄元冬发布了新的文献求助10
24秒前
小马甲应助LLL采纳,获得10
25秒前
李健应助钟于采纳,获得10
26秒前
袁大头发布了新的文献求助10
27秒前
27秒前
29秒前
30秒前
31秒前
33秒前
chenhua5460完成签到,获得积分10
34秒前
lppp发布了新的文献求助10
34秒前
Jasper应助LLL采纳,获得10
34秒前
David发布了新的文献求助10
35秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432