Spatio–Temporal–Spectral Collaborative Learning for Spatio–Temporal Fusion with Land Cover Changes

计算机科学 卷积神经网络 加权 人工智能 土地覆盖 稳健性(进化) 模式识别(心理学) 可解释性 遥感 土地利用 地理 医学 生物化学 化学 土木工程 基因 工程类 放射科
作者
Xiangchao Meng,Qiang Liu,Feng Shao,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:20
标识
DOI:10.1109/tgrs.2022.3185459
摘要

Spatio-temporal fusion by combining the complementary spatial and temporal advantages of multi-source remote sensing images to obtain time-series high spatial resolution images is highly desirable in monitoring surface dynamics. Currently, deep learning (DL)-based fusion methods have received extensive attention. However, existing DL-based spatio-temporal fusion methods are generally limited in fusing the images with land cover changes. In this paper, we propose a spatio-temporal-spectral collaborative learning framework for spatio-temporal fusion to alleviate this problem. Specifically, the proposed method integrates the convolutional neural network and recurrent neural network into a unified framework, consisting of three sub-networks: multi-scale siamese convolutional neural network, multi-layer convolutional recurrent neural network, and adaptive weighting fusion network. The multi-scale siamese convolutional neural network has a flexible weight-sharing network to extract multi-scale spatial-spectral features from multi-source remote sensing images. The multi-layer convolutional recurrent neural network is constructed on the convolutional long-short term memory units to comprehensively learn the land cover changes by spatial, spectral, and temporal joint features. The adaptive weighting fusion network with a spatio-temporal-spectral change loss is proposed to further improve the interpretability and robustness. The experiments were performed on the publicly available benchmark datasets featured by phenology and land cover type changes, respectively. The experimental results demonstrated the competitive performance of the proposed method than other state-of-the-art fusion methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊俊完成签到 ,获得积分0
1秒前
xiyou完成签到,获得积分10
2秒前
调研昵称发布了新的文献求助10
3秒前
欢喜板凳完成签到 ,获得积分10
3秒前
小徐发布了新的文献求助30
4秒前
4秒前
4秒前
桐桐应助哈哈哈采纳,获得10
4秒前
执着无声应助will采纳,获得10
5秒前
诸觅双完成签到 ,获得积分10
6秒前
chenll1988完成签到 ,获得积分10
9秒前
fiu~完成签到 ,获得积分10
9秒前
无意识形态完成签到,获得积分10
10秒前
李志明完成签到,获得积分10
10秒前
yangjianya完成签到,获得积分20
11秒前
老隋完成签到,获得积分20
11秒前
12秒前
贾小闲完成签到,获得积分10
12秒前
prosperp举报Jackson求助涉嫌违规
13秒前
无心的秋珊完成签到 ,获得积分10
13秒前
zyc1111111完成签到,获得积分10
14秒前
15秒前
正直冰露发布了新的文献求助10
15秒前
高高ai发布了新的文献求助10
16秒前
胜天半子发布了新的文献求助10
18秒前
QQ完成签到,获得积分10
18秒前
18秒前
研友_LOqqmZ完成签到 ,获得积分10
20秒前
Jiny完成签到,获得积分10
21秒前
Wendy完成签到,获得积分10
21秒前
薛定谔的猫应助从容寒松采纳,获得20
21秒前
无医完成签到,获得积分10
22秒前
苏书白完成签到 ,获得积分10
23秒前
24秒前
25秒前
叽叽叽完成签到,获得积分20
26秒前
zz发布了新的文献求助10
26秒前
...完成签到,获得积分10
26秒前
shionn完成签到,获得积分10
28秒前
无敌反派大美人应助鑫7采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3357089
求助须知:如何正确求助?哪些是违规求助? 2980585
关于积分的说明 8695191
捐赠科研通 2662283
什么是DOI,文献DOI怎么找? 1457752
科研通“疑难数据库(出版商)”最低求助积分说明 674849
邀请新用户注册赠送积分活动 665878