作者
Richard Osei,Chengde Yang,Lijuan Wei,Mengjun Jin,Solomon Boamah
摘要
Potato soft rot, caused by the pathogenic bacterium Lelliottia amnigena (Enterobacter amnigenus), is a serious and widespread disease affecting global potato production. Both salicylic acid (SA) and proline (Pro) play important roles in enhancing potato tuber resistance to soft rot. However, the combined effects of SA and Pro on defense responses of potato tubers to L. amnigena infection remain unknown. Hence, the combined effects of SA and Pro in controlling newly emerging potato soft rot bacteria were investigated. Sterilized healthy potato tubers were pretreated with 1.5 mM SA and 2.0 mM Pro 24 h before an inoculation of 0.3 mL of L. amnigena suspension (3.69 × 107 CFU mL−1). Rotting was noticed on the surfaces of the hole where the L. amnigena suspension was inoculated. Application of SA and Pro with L. amnigena lowered the activity of pectinase, protease, pectin lyase, and cellulase by 64.3, 77.8, 66.4 and 84.1%, and decreased malondialdehyde and hydrogen peroxide contents by 77.2% and 83.8%, respectively, compared to the control. The activities of NADPH oxidase, superoxide dismutase, peroxide, catalase, polyphenol oxidase, phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, 4-coumaryl-CoA ligase and cinnamate-4-hydroxylase were increased in the potato tubers with combined treatments by 91.4, 92.4, 91.8, 93.5, 94.9, 91.3, 96.2, 94.7 and 97.7%, respectively, compared to untreated stressed tubers. Six defense-related genes, pathogenesis-related protein, tyrosine-protein kinase, Chitinase-like protein, phenylalanine ammonia-lyase, pathogenesis-related homeodomain protein, and serine protease inhibitor, were induced in SA + Pro treatment when compared with individual application of SA or Pro. This study indicates that the combined treatment of 1.5 mM SA and 2.0 mM Pro had a synergistic effect in controlling potato soft rot caused by a newly emerging bacterium.