Machine learning-based radiomic computed tomography phenotyping of thymic epithelial tumors: Predicting pathological and survival outcomes

医学 病态的 计算机断层摄影术 放射科 病理 医学物理学
作者
Dong Tian,Hao‐Ji Yan,Haruhiko Shiiya,Masaaki Sato,Aya Shinozaki‐Ushiku,Jun Nakajima
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [Elsevier BV]
卷期号:165 (2): 502-516.e9 被引量:11
标识
DOI:10.1016/j.jtcvs.2022.05.046
摘要

For patients with thymic epithelial tumors, accurately predicting clinicopathological outcomes remains challenging. We aimed to investigate the performance of machine learning-based radiomic computed tomography phenotyping for predicting pathological (World Health Organization [WHO] type and TNM stage) and survival outcomes (overall and progression-free survival) in patients with thymic epithelial tumors.This retrospective study included patients with thymic epithelial tumors between January 2001 and January 2022. The radiomic features were extracted from preoperative unenhanced computed tomography images. After strict feature selection, random forest and random survival forest models were fitted to predict pathological and survival outcomes, respectively. The model performance was assessed by the area under the curve (AUC) and validated internally by the bootstrap method.In total, 124 patients with a median age of 61 years were included. The radiomics random forest models of WHO type and TNM stage showed satisfactory performance with an AUCWHO of 0.898 (95% CI, 0.753-1.000) and an AUCTNM of 0.766 (95% CI, 0.642-0.886). For overall survival and progression-free survival prediction, the radiomics random survival forest models showed good performance (integrated AUCs, 0.923; 95% CI, 0.691-1.000 and 0.702; 95% CI, 0.513-0.875, respectively), and the integrated AUCs increased to 0.935 (95% CI, 0.705-1.000) and 0.811 (95% CI, 0.647-0.942), respectively, when combined with clinicopathological features.Machine learning-based radiomic computed tomography phenotyping might allow for the satisfactory prediction of pathological and survival outcomes and further improve prognostic performance when integrated with clinicopathological features in patients with thymic epithelial tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Levieus应助狂野的初晴采纳,获得10
1秒前
白宏宝发布了新的文献求助10
2秒前
2秒前
compchem发布了新的文献求助10
2秒前
无欲无求发布了新的文献求助10
2秒前
搜集达人应助孙思琪采纳,获得10
2秒前
huco发布了新的文献求助10
2秒前
3秒前
慕斯唐发布了新的文献求助10
5秒前
小鹿呀发布了新的文献求助10
6秒前
6秒前
8秒前
追寻忆枫完成签到,获得积分20
8秒前
9秒前
hyperion发布了新的文献求助10
9秒前
yuan发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
科研通AI6应助nannannan采纳,获得10
11秒前
compchem完成签到,获得积分10
11秒前
lina发布了新的文献求助10
11秒前
hhh发布了新的文献求助10
12秒前
12秒前
小二郎应助zkq采纳,获得10
12秒前
威武从霜发布了新的文献求助10
13秒前
13秒前
李西瓜发布了新的文献求助30
14秒前
14秒前
胡萝卜发布了新的文献求助10
14秒前
万能图书馆应助是小段呀采纳,获得10
14秒前
来自三百发布了新的文献求助30
14秒前
15秒前
SciGPT应助ddfighting采纳,获得10
16秒前
21完成签到,获得积分20
16秒前
17秒前
17秒前
归尘应助慕斯唐采纳,获得30
17秒前
lty001完成签到,获得积分10
17秒前
17秒前
阳光忆寒发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073745
求助须知:如何正确求助?哪些是违规求助? 4293839
关于积分的说明 13379559
捐赠科研通 4115216
什么是DOI,文献DOI怎么找? 2253490
邀请新用户注册赠送积分活动 1258246
关于科研通互助平台的介绍 1191140