医学
随机森林
阶段(地层学)
病态的
无线电技术
计算机断层摄影术
回顾性队列研究
生存分析
内科学
存活率
放射科
肿瘤科
机器学习
计算机科学
生物
古生物学
作者
Dong Tian,Hao‐Ji Yan,Haruhiko Shiiya,Masaaki Sato,Aya Shinozaki‐Ushiku,Jun Nakajima
标识
DOI:10.1016/j.jtcvs.2022.05.046
摘要
For patients with thymic epithelial tumors, accurately predicting clinicopathological outcomes remains challenging. We aimed to investigate the performance of machine learning-based radiomic computed tomography phenotyping for predicting pathological (World Health Organization [WHO] type and TNM stage) and survival outcomes (overall and progression-free survival) in patients with thymic epithelial tumors.This retrospective study included patients with thymic epithelial tumors between January 2001 and January 2022. The radiomic features were extracted from preoperative unenhanced computed tomography images. After strict feature selection, random forest and random survival forest models were fitted to predict pathological and survival outcomes, respectively. The model performance was assessed by the area under the curve (AUC) and validated internally by the bootstrap method.In total, 124 patients with a median age of 61 years were included. The radiomics random forest models of WHO type and TNM stage showed satisfactory performance with an AUCWHO of 0.898 (95% CI, 0.753-1.000) and an AUCTNM of 0.766 (95% CI, 0.642-0.886). For overall survival and progression-free survival prediction, the radiomics random survival forest models showed good performance (integrated AUCs, 0.923; 95% CI, 0.691-1.000 and 0.702; 95% CI, 0.513-0.875, respectively), and the integrated AUCs increased to 0.935 (95% CI, 0.705-1.000) and 0.811 (95% CI, 0.647-0.942), respectively, when combined with clinicopathological features.Machine learning-based radiomic computed tomography phenotyping might allow for the satisfactory prediction of pathological and survival outcomes and further improve prognostic performance when integrated with clinicopathological features in patients with thymic epithelial tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI