Low-Complexity High-Resolution Frequency Estimation of Multi-Sinusoidal Signals

估计员 算法 克拉姆-饶行 计算复杂性理论 凸优化 梯度下降 数学 数学优化 计算机科学 估计理论 正多边形 统计 人工智能 人工神经网络 几何学
作者
Fan-Shuo Tseng,Mantsawee Sanpayao,Tsang-Yi Wang,Ming-Xian Zhong
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:2
标识
DOI:10.1109/tim.2022.3187728
摘要

High-resolution frequency estimation is crucial for some applications. Accordingly, the present study proposes three high-performance computationally-efficient methods for high-resolution frequency estimators, which are designed based on a modified likelihood function. Traditional maximum likelihood based approaches for high-resolution frequency estimation are inefficient since the associated optimization problem is non-convex. Accordingly, in the first estimator proposed in this study, the amplitudes and frequencies of the multi-sinusoidal signals are estimated iteratively based on a simple linear Taylor approximation and a low-dimensional closed-form solution in every iteration. In the second estimator, the frequencies are determined directly using a primal decomposition approach and a gradient descent search method. Finally, a novel low-complexity parallel interference cancellation (PIC)-based frequency estimation approach is developed. The simulation results show that the proposed designs not only meet the Cramér-Rao lower bound (CRLB) in most cases of the conducted examples, but also possess lower computational complexity than existing state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
维尼完成签到,获得积分10
2秒前
王自信发布了新的文献求助10
2秒前
3秒前
FashionBoy应助JamesTYD采纳,获得10
3秒前
3秒前
善学以致用应助JasVe采纳,获得50
4秒前
freedom发布了新的文献求助10
5秒前
杨森omg发布了新的文献求助10
6秒前
fancy发布了新的文献求助10
6秒前
6秒前
好好学习发布了新的文献求助10
6秒前
7秒前
8秒前
8秒前
丘比特应助低调采纳,获得10
9秒前
天天快乐应助Junli采纳,获得10
9秒前
ding应助xiaoyu采纳,获得10
10秒前
迷失浪人发布了新的文献求助10
11秒前
pkaq发布了新的文献求助10
11秒前
咎星完成签到,获得积分10
11秒前
yang发布了新的文献求助10
11秒前
Lucas应助Siri采纳,获得30
12秒前
Orange应助syh采纳,获得20
12秒前
yl发布了新的文献求助10
12秒前
lll完成签到 ,获得积分10
12秒前
虎虎虎发布了新的文献求助10
12秒前
尊敬的左蓝完成签到,获得积分10
13秒前
YY完成签到,获得积分10
13秒前
WM应助wangtingyu采纳,获得10
14秒前
15秒前
CipherSage应助wang11采纳,获得10
15秒前
萧水白应助扬帆起航采纳,获得20
15秒前
15秒前
菠萝菠萝哒应助曾鸣采纳,获得10
17秒前
17秒前
老徐完成签到,获得积分10
17秒前
17秒前
19秒前
Jasper应助子卿采纳,获得10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312794
求助须知:如何正确求助?哪些是违规求助? 2945217
关于积分的说明 8523802
捐赠科研通 2621000
什么是DOI,文献DOI怎么找? 1433267
科研通“疑难数据库(出版商)”最低求助积分说明 664923
邀请新用户注册赠送积分活动 650271