亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CADxReport: Chest x-ray report generation using co-attention mechanism and reinforcement learning

计算机科学 人工智能 强化学习 背景(考古学) 分类器(UML) 深度学习 机器学习 模式识别(心理学)
作者
Navdeep Kaur,Ajay Mittal
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:: 105498-105498
标识
DOI:10.1016/j.compbiomed.2022.105498
摘要

Automated generation of radiological reports for different imaging modalities is essentially required to smoothen the clinical workflow and alleviate radiologists’ workload. It involves the careful amalgamation of image processing techniques for medical image interpretation and language generation techniques for report generation. This paper presents CADxReport, a coattention and reinforcement learning based technique for generating clinically accurate reports from chest x-ray (CXR) images. CADxReport, uses VGG19 network pre-trained over ImageNet dataset and a multi-label classifier for extracting visual and semantic features from CXR images, respectively. The co-attention mechanism with both the features is used to generate a context vector, which is then passed to HLSTM for radiological report generation. The model is trained using reinforcement learning to maximize CIDEr rewards. OpenI dataset, having 7, 470 CXRs along with 3, 955 associated structured radiological reports, is used for training and testing. Our proposed model is able to generate clinically accurate reports from CXR images. The quantitative evaluations confirm satisfactory results by achieving the following performance scores: BLEU-1 = 0.577, BLEU-2 = 0.478, BLEU-3 = 0.403, BLEU-4 = 0.346, ROUGE = 0.618 and CIDEr = 0.380. The evaluation using BLEU, ROUGE, and CIDEr score metrics indicates that the proposed model generates sufficiently accurate CXR reports and outperforms most of the state-of-the-art methods for the given task. • We propose CADxReport, an automatic chest radiographic report generation system. • Uses Co-attention mechanism to attends both visual and semantic features. • Model is reinforced using CIDEr rewards to generate clinically correct reports. • CADxReport outperforms various state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
8秒前
8秒前
小潮完成签到,获得积分10
10秒前
ZengLY发布了新的文献求助30
14秒前
szc完成签到,获得积分10
18秒前
zhangshenlan完成签到 ,获得积分10
21秒前
28秒前
坚定岂愈发布了新的文献求助10
31秒前
34秒前
杨迅发布了新的文献求助80
39秒前
乐乐应助科研通管家采纳,获得10
40秒前
Orange应助iii采纳,获得10
49秒前
Jasper应助杨迅采纳,获得80
50秒前
研友_VZG7GZ应助123采纳,获得10
51秒前
矮小的盼夏完成签到 ,获得积分10
55秒前
不配.完成签到,获得积分0
1分钟前
1分钟前
123完成签到,获得积分10
1分钟前
123发布了新的文献求助10
1分钟前
liu95完成签到 ,获得积分10
1分钟前
ShowMaker应助LeuinPonsgi采纳,获得30
1分钟前
ding应助顺利山柏采纳,获得10
1分钟前
华仔应助coco采纳,获得10
1分钟前
1分钟前
Jessica完成签到,获得积分10
1分钟前
1分钟前
无花果应助雨淋沐风采纳,获得10
1分钟前
iii发布了新的文献求助10
1分钟前
Orange应助雨淋沐风采纳,获得10
1分钟前
球球完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
打打应助春风采纳,获得10
2分钟前
syyyao发布了新的文献求助10
2分钟前
2分钟前
研友_VZG7GZ应助Latous采纳,获得10
2分钟前
深情世立发布了新的文献求助10
2分钟前
挽眠完成签到,获得积分20
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845873
捐赠科研通 2459235
什么是DOI,文献DOI怎么找? 1309099
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727