CADxReport: Chest x-ray report generation using co-attention mechanism and reinforcement learning

计算机科学 人工智能 机制(生物学) 钢筋 强化学习 X射线 材料科学 物理 光学 复合材料 量子力学
作者
Navdeep Kaur,Ajay Mittal
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105498-105498 被引量:20
标识
DOI:10.1016/j.compbiomed.2022.105498
摘要

Automated generation of radiological reports for different imaging modalities is essentially required to smoothen the clinical workflow and alleviate radiologists’ workload. It involves the careful amalgamation of image processing techniques for medical image interpretation and language generation techniques for report generation. This paper presents CADxReport, a coattention and reinforcement learning based technique for generating clinically accurate reports from chest x-ray (CXR) images. CADxReport, uses VGG19 network pre-trained over ImageNet dataset and a multi-label classifier for extracting visual and semantic features from CXR images, respectively. The co-attention mechanism with both the features is used to generate a context vector, which is then passed to HLSTM for radiological report generation. The model is trained using reinforcement learning to maximize CIDEr rewards. OpenI dataset, having 7, 470 CXRs along with 3, 955 associated structured radiological reports, is used for training and testing. Our proposed model is able to generate clinically accurate reports from CXR images. The quantitative evaluations confirm satisfactory results by achieving the following performance scores: BLEU-1 = 0.577, BLEU-2 = 0.478, BLEU-3 = 0.403, BLEU-4 = 0.346, ROUGE = 0.618 and CIDEr = 0.380. The evaluation using BLEU, ROUGE, and CIDEr score metrics indicates that the proposed model generates sufficiently accurate CXR reports and outperforms most of the state-of-the-art methods for the given task. • We propose CADxReport, an automatic chest radiographic report generation system. • Uses Co-attention mechanism to attends both visual and semantic features. • Model is reinforced using CIDEr rewards to generate clinically correct reports. • CADxReport outperforms various state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
停婷发布了新的文献求助10
1秒前
bingbing发布了新的文献求助10
1秒前
菠萝炒饭完成签到,获得积分10
2秒前
一键三连发布了新的文献求助10
2秒前
琦琦发布了新的文献求助10
3秒前
liuzengzhang666完成签到,获得积分10
3秒前
4秒前
。。。完成签到,获得积分10
4秒前
4秒前
5秒前
ED应助牛马人生采纳,获得10
5秒前
achill完成签到,获得积分10
5秒前
Hui完成签到,获得积分10
5秒前
韩soso完成签到,获得积分10
6秒前
迷人幻竹发布了新的文献求助30
6秒前
可爱芷容发布了新的文献求助10
6秒前
动听梨愁完成签到,获得积分10
7秒前
星辰大海应助bluesky采纳,获得10
8秒前
星辰大海应助盛夏蔚来采纳,获得10
8秒前
Embrace发布了新的文献求助10
8秒前
wdy111举报Ann求助涉嫌违规
9秒前
9秒前
dhts应助比巴卜采纳,获得10
10秒前
归尘发布了新的文献求助10
11秒前
11秒前
11秒前
脑洞疼应助Joe采纳,获得20
11秒前
13秒前
李雯完成签到,获得积分10
13秒前
上官若男应助kassidy采纳,获得10
14秒前
夕沫发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
ws发布了新的文献求助10
15秒前
16秒前
16秒前
书记完成签到,获得积分10
17秒前
土豆丝P完成签到,获得积分10
18秒前
Wind发布了新的文献求助10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653