A fuzzy distance-based ensemble of deep models for cervical cancer detection

计算机科学 欧几里德距离 宫颈癌 人工智能 学习迁移 模糊逻辑 集成学习 机器学习 基本事实 数据挖掘 模式识别(心理学) 癌症 医学 内科学
作者
Rishav Pramanik,Momojit Biswas,Shibaprasad Sen,Luis A. de Souza,João Paulo Papa,Ram Sarkar
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:219: 106776-106776 被引量:61
标识
DOI:10.1016/j.cmpb.2022.106776
摘要

Cervical cancer is one of the leading causes of women's death. Like any other disease, cervical cancer's early detection and treatment with the best possible medical advice are the paramount steps that should be taken to ensure the minimization of after-effects of contracting this disease. PaP smear images are one the most effective ways to detect the presence of such type of cancer. This article proposes a fuzzy distance-based ensemble approach composed of deep learning models for cervical cancer detection in PaP smear images.We employ three transfer learning models for this task: Inception V3, MobileNet V2, and Inception ResNet V2, with additional layers to learn data-specific features. To aggregate the outcomes of these models, we propose a novel ensemble method based on the minimization of error values between the observed and the ground-truth. For samples with multiple predictions, we first take three distance measures, i.e., Euclidean, Manhattan (City-Block), and Cosine, for each class from their corresponding best possible solution. We then defuzzify these distance measures using the product rule to calculate the final predictions.In the current experiments, we have achieved 95.30%, 93.92%, and 96.44% respectively when Inception V3, MobileNet V2, and Inception ResNet V2 run individually. After applying the proposed ensemble technique, the performance reaches 96.96% which is higher than the individual models.Experimental outcomes on three publicly available datasets ensure that the proposed model presents competitive results compared to state-of-the-art methods. The proposed approach provides an end-to-end classification technique to detect cervical cancer from PaP smear images. This may help the medical professionals for better treatment of the cervical cancer. Thus increasing the overall efficiency in the whole testing process. The source code of the proposed work can be found in github.com/rishavpramanik/CervicalFuzzyDistanceEnsemble.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小于爱科研完成签到,获得积分10
刚刚
刚刚
zkc完成签到,获得积分10
刚刚
刚刚
luo发布了新的文献求助30
刚刚
雾蓝发布了新的文献求助10
刚刚
1秒前
zhang发布了新的文献求助10
1秒前
佳佳发布了新的文献求助10
2秒前
royan2发布了新的文献求助10
2秒前
2秒前
zkc发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
沐沐君完成签到,获得积分10
3秒前
nancyzhy完成签到,获得积分10
3秒前
当时明月在完成签到,获得积分0
3秒前
共享精神应助无情念之采纳,获得10
4秒前
zhenzhen发布了新的文献求助10
4秒前
韭黄发布了新的文献求助10
4秒前
4秒前
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
4秒前
英姑应助科研通管家采纳,获得10
4秒前
maox1aoxin应助科研通管家采纳,获得30
5秒前
CipherSage应助科研通管家采纳,获得10
5秒前
激昂的幻梦完成签到,获得积分10
5秒前
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
shouyu29应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
w_x_x应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759