Exploring Electrochemical C(sp3)–H Oxidation for the Late-Stage Methylation of Complex Molecules

化学 甲基化 阶段(地层学) 电化学 分子 放射化学 有机化学 生物化学 古生物学 电极 物理化学 基因 生物
作者
Luiz F. T. Novaes,Justin S. K. Ho,Kaining Mao,Kaida Liu,Mayank Tanwar,Matthew Neurock,Elisia Villemure,Jack A. Terrett,Song Lin
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (3): 1187-1197 被引量:108
标识
DOI:10.1021/jacs.1c09412
摘要

The "magic methyl" effect, a dramatic boost in the potency of biologically active compounds from the incorporation of a single methyl group, provides a simple yet powerful strategy employed by medicinal chemists in the drug discovery process. Despite significant advances, methodologies that enable the selective C(sp3)–H methylation of structurally complex medicinal agents remain very limited. In this work, we disclose a modular, efficient, and selective strategy for the α-methylation of protected amines (i.e., amides, carbamates, and sulfonamides) by means of electrochemical oxidation. Mechanistic analysis guided our development of an improved electrochemical protocol on the basis of the classic Shono oxidation reaction, which features broad reaction scope, high functional group compatibility, and operational simplicity. Importantly, this reaction system is amenable to the late-stage functionalization of complex targets containing basic nitrogen groups that are prevalent in medicinally active agents. When combined with organozinc-mediated C–C bond formation, our protocol enabled the direct methylation of a myriad of amine derivatives including those that have previously been explored for the "magic methyl" effect. This synthesis strategy thus circumvents multistep de novo synthesis that is currently necessary to access such compounds and has the potential to accelerate drug discovery efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助cybbbbbb采纳,获得10
刚刚
果汁发布了新的文献求助10
刚刚
1秒前
1秒前
Lucas应助柚子采纳,获得10
1秒前
MADKAI发布了新的文献求助10
1秒前
2秒前
爆米花应助咕咕咕采纳,获得10
2秒前
zxy发布了新的文献求助10
2秒前
3秒前
醉人的仔发布了新的文献求助10
3秒前
daguan完成签到,获得积分10
3秒前
桐桐应助nikai采纳,获得10
3秒前
4秒前
5秒前
123完成签到,获得积分10
5秒前
善良香岚发布了新的文献求助10
5秒前
6秒前
6秒前
444完成签到,获得积分10
6秒前
任一发布了新的文献求助30
6秒前
莉莉发布了新的文献求助10
7秒前
Zoe发布了新的文献求助10
7秒前
Hover完成签到,获得积分10
7秒前
自然的茉莉完成签到,获得积分10
8秒前
8秒前
Mandy完成签到,获得积分10
8秒前
9秒前
脑洞疼应助qaq采纳,获得10
9秒前
世界尽头发布了新的文献求助10
9秒前
小二郎应助科研民工采纳,获得10
9秒前
10秒前
无奈满天发布了新的文献求助10
10秒前
11秒前
MADKAI发布了新的文献求助10
11秒前
11秒前
贪玩丸子完成签到,获得积分10
11秒前
神勇的雅香应助liutaili采纳,获得10
12秒前
KSGGS完成签到,获得积分10
12秒前
YANG关注了科研通微信公众号
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759