化学
甲基化
阶段(地层学)
电化学
分子
放射化学
有机化学
生物化学
古生物学
电极
物理化学
基因
生物
作者
Luiz F. T. Novaes,Justin S. K. Ho,Kaining Mao,Kaida Liu,Mayank Tanwar,Matthew Neurock,Elisia Villemure,Jack A. Terrett,Song Lin
摘要
The "magic methyl" effect, a dramatic boost in the potency of biologically active compounds from the incorporation of a single methyl group, provides a simple yet powerful strategy employed by medicinal chemists in the drug discovery process. Despite significant advances, methodologies that enable the selective C(sp3)–H methylation of structurally complex medicinal agents remain very limited. In this work, we disclose a modular, efficient, and selective strategy for the α-methylation of protected amines (i.e., amides, carbamates, and sulfonamides) by means of electrochemical oxidation. Mechanistic analysis guided our development of an improved electrochemical protocol on the basis of the classic Shono oxidation reaction, which features broad reaction scope, high functional group compatibility, and operational simplicity. Importantly, this reaction system is amenable to the late-stage functionalization of complex targets containing basic nitrogen groups that are prevalent in medicinally active agents. When combined with organozinc-mediated C–C bond formation, our protocol enabled the direct methylation of a myriad of amine derivatives including those that have previously been explored for the "magic methyl" effect. This synthesis strategy thus circumvents multistep de novo synthesis that is currently necessary to access such compounds and has the potential to accelerate drug discovery efforts.
科研通智能强力驱动
Strongly Powered by AbleSci AI