亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Impact of Feature Extraction and Feature Selection Algorithms on Punjabi Speech Emotion Recognition Using Convolutional Neural Network

计算机科学 特征选择 特征提取 人工智能 分类器(UML) 模式识别(心理学) 卷积神经网络 语音识别 特征(语言学) 语言学 哲学
作者
Kamaldeep Kaur,Parminder Singh
标识
DOI:10.1145/3511888
摘要

As a challenge to refine the spontaneity and productivity of a machine and human coherence, speech emotion recognition has been an overriding area of research. The trustability and fulfillment of emotion recognition are largely involved with the feature extraction and selection processes. An important role is played in exploring and distinguishing audio content during the feature extraction phase. Also, the features that have been extracted should be resilient to a number of disturbances and reliable enough for an adequate classification system. This article focuses on three main components of a Speech Emotion Recognition (SER) process. The first one is the optimal feature extraction method for a Punjabi SER system. The second one is the use of an appropriate feature selection method that selects effectual features from the ones extracted in the first step and removes the redundant features to improve the conduct of emotion recognition. The third one is the classification model that has been used further for emotion recognition. So the scope of this article is to explain the three main steps of the Punjabi SER system: feature extraction, feature selection, and emotion recognition with classifier. The results have been calculated and compared for number of feature set combinations, with and without a feature selection process. A total of 10 experiments are carried out, and various performance metrics such as precision, recall, F1-score, accuracy, and so on, are used to demonstrate the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
37秒前
55秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
科目三应助Thh采纳,获得10
2分钟前
善学以致用应助皮皮蟹采纳,获得10
2分钟前
oscar完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Thh发布了新的文献求助10
2分钟前
皮皮蟹发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
皮皮蟹完成签到,获得积分10
3分钟前
momi完成签到 ,获得积分10
3分钟前
4分钟前
壮观的谷冬完成签到 ,获得积分10
4分钟前
科研通AI2S应助Sience采纳,获得10
4分钟前
JamesPei应助Thh采纳,获得10
4分钟前
4分钟前
4分钟前
Thh发布了新的文献求助10
4分钟前
4分钟前
激动的似狮完成签到,获得积分10
5分钟前
慕青应助科研通管家采纳,获得30
5分钟前
5分钟前
6分钟前
Jenny发布了新的文献求助10
6分钟前
Jenny完成签到,获得积分10
6分钟前
6分钟前
AndySu发布了新的文献求助10
6分钟前
zhl完成签到,获得积分10
6分钟前
懒羊羊大王完成签到 ,获得积分10
7分钟前
星辰大海应助科研通管家采纳,获得10
7分钟前
Ava应助科研通管家采纳,获得10
7分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261524
求助须知:如何正确求助?哪些是违规求助? 2902348
关于积分的说明 8319615
捐赠科研通 2572232
什么是DOI,文献DOI怎么找? 1397469
科研通“疑难数据库(出版商)”最低求助积分说明 653733
邀请新用户注册赠送积分活动 632240