Impact of Composition and Placement of Hydrogen-Bonding Groups along Polymer Chains on Blend Phase Behavior: Coarse-Grained Molecular Dynamics Simulation Study

分子动力学 氢键 层状结构 材料科学 相(物质) 聚合物 单体 相图 高分子化学 聚合物混合物 化学物理 结晶学 化学工程 化学 分子 共聚物 复合材料 计算化学 有机化学 工程类
作者
Arjita Kulshreshtha,Ryan C. Hayward,Arthi Jayaraman
出处
期刊:Macromolecules [American Chemical Society]
卷期号:55 (7): 2675-2690 被引量:19
标识
DOI:10.1021/acs.macromol.2c00055
摘要

In this paper, we study symmetric polymer blends comprised of two polymer chemistries, one containing hydrogen-bonding (H-bonding) acceptor groups and another containing H-bonding donor groups to predict the blend morphology (i.e., two-phase, ordered/lamellar, disordered, disordered microphase-separated, and bicontinuous microemulsion or BμE) for varying compositions (i.e., fraction of monomers containing hydrogen-bonding groups along the polymer chain) and placements of hydrogen-bonding groups along the polymer chains. We use molecular dynamics (MD) simulations with a previously developed coarse-grained (CG) model that captures relevant macromolecular length and time scales and both the attractive directional interactions between H-bonding acceptor and donor groups and isotropic polymer–polymer interactions. We first validate our CG MD simulation approach by reproducing the published theoretical phase diagram for end-associating polymer chains at varying H-bonding strengths vs polymer segregation strengths. We also show that with increasing H-bonding strength, end-associating blends with short-chain lengths transition from two-phase to BμE or from disordered blends to BμE depending on the polymer segregation strength and finally to disordered microphase morphologies. End-associating blends with longer-chain lengths transition from two-phase to ordered lamellar phase at high polymer segregation strengths and from two-phase to disordered microphase-separated state at low polymer segregation strengths. Next, we study blends with the center placement of a single H-bonding group in each polymer chain as well as random and regular placements of multiple H-bonding groups per polymer chain. Regardless of the number and placement of H-bonding groups, with increasing H-bonding strength, the fraction of associated H-bonding groups increases with the system transitioning from blends of unassociated polymers to a mixture of associated copolymers and unassociated polymers and finally to a melt of fully associated supramolecular copolymers. At intermediate strengths of H-bonding, we observe BμE morphologies in all systems with end, center, random, and regular placements of H-bonding group(s). At high strengths of H-bonding, the blend morphology is disordered microphase-separated with domain sizes being smallest for the center placement, followed by the end, regular, and then random placements. We find that this variation in the placement of H-bonding groups leads to a greater change in domain sizes than with variation in the strength of the isotropic polymer–polymer interaction at constant H-bonding attraction. These trends in disordered microphase domain sizes with varying compositions and placements of H-bonding groups are linked to the supramolecular copolymer architecture formed upon the association of the two homopolymer chemistries. The polymers with the center placement of H-bonding groups form miktoarm star copolymers upon association, which show smaller domain sizes compared to diblock copolymers formed by polymers with end placement at the same molecular weight; in contrast, the polymers with random and regular placements of multiple H-bonding groups form nonlinear copolymer architectures with dispersity in block length leading to larger domain sizes. Overall, our work establishes design rules for incorporating H-bonding functional groups along polymer chains to achieve precisely tuned morphology and control over the disordered microphase domain sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koi发布了新的文献求助10
刚刚
浦肯野应助湖月照我影采纳,获得30
刚刚
刚刚
陈博士完成签到,获得积分10
1秒前
Citrus完成签到,获得积分10
2秒前
费老三发布了新的文献求助30
2秒前
华仔应助chenjyuu采纳,获得10
2秒前
2秒前
最最最发布了新的文献求助10
2秒前
2秒前
Tuesday完成签到 ,获得积分10
3秒前
3秒前
4秒前
阿毛发布了新的文献求助10
5秒前
6秒前
情怀应助灵巧荆采纳,获得10
6秒前
Ll发布了新的文献求助10
6秒前
Peter发布了新的文献求助30
7秒前
7秒前
8秒前
科研韭菜发布了新的文献求助10
8秒前
科研通AI5应助爱学习采纳,获得10
8秒前
科研通AI5应助跳跃的太阳采纳,获得10
8秒前
苏尔琳诺完成签到,获得积分10
8秒前
科研通AI5应助a1oft采纳,获得10
9秒前
9秒前
关关过完成签到,获得积分10
9秒前
呢不辣完成签到,获得积分10
9秒前
9秒前
shi hui应助陈博士采纳,获得10
9秒前
9秒前
糖糖关注了科研通微信公众号
10秒前
10秒前
小恶于完成签到 ,获得积分10
10秒前
科研通AI2S应助落晨采纳,获得10
11秒前
11秒前
12秒前
半颗橙子发布了新的文献求助10
12秒前
小可爱完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762