Prediction of cerebral aneurysm rupture using a point cloud neural network

医学 动脉瘤 支持向量机 人工神经网络 人工智能 血管造影 曲线下面积 放射科 内科学 机器学习 计算机科学
作者
Xiaoyuan Luo,Jienan Wang,Xinmei Liang,Lei Yan,XinHua Chen,Jian He,Jing Luo,Bing Zhao,Guangchen He,Manning Wang,Yueqi Zhu
出处
期刊:Journal of NeuroInterventional Surgery [BMJ]
卷期号:15 (4): 380-386 被引量:7
标识
DOI:10.1136/neurintsurg-2022-018655
摘要

Accurate prediction of cerebral aneurysm (CA) rupture is of great significance. We intended to evaluate the accuracy of the point cloud neural network (PC-NN) in predicting CA rupture using MR angiography (MRA) and CT angiography (CTA) data.418 CAs in 411 consecutive patients confirmed by CTA (n=180) or MRA (n=238) in a single hospital were retrospectively analyzed. A PC-NN aneurysm model with/without parent artery involvement was used for CA rupture prediction and compared with ridge regression, support vector machine (SVM) and neural network (NN) models based on radiomics features. Furthermore, the performance of the trained PC-NN and radiomics-based models was prospectively evaluated in 258 CAs of 254 patients from five external centers.In the internal test data, the area under the curve (AUC) of the PC-NN model trained with parent artery (AUC=0.913) was significantly higher than that of the PC-NN model trained without parent artery (AUC=0.851; p=0.041) and of the ridge regression (AUC=0.803; p=0.019), SVM (AUC=0.788; p=0.013) and NN (AUC=0.805; p=0.023) radiomics-based models. Additionally, the PC-NN model trained with MRA source data achieved a higher prediction accuracy (AUC=0.936) than that trained with CTA source data (AUC=0.824; p=0.043). In external data of prospective cohort patients, the AUC of PC-NN was 0.835, significantly higher than ridge regression (0.692; p<0.001), SVM (0.701; p<0.001) and NN (0.681; p<0.001) models.PC-NNs can achieve more accurate CA rupture prediction than traditional radiomics-based models. Furthermore, the performance of the PC-NN model trained with MRA data was superior to that trained with CTA data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宛海完成签到 ,获得积分10
刚刚
刚刚
DIXi233应助娇气的灭绝采纳,获得30
1秒前
Parrot_PAI完成签到,获得积分10
1秒前
2秒前
Noah完成签到,获得积分10
4秒前
wlscj应助llllllll采纳,获得30
5秒前
tywznba发布了新的文献求助10
5秒前
5秒前
Jennifer完成签到,获得积分10
6秒前
wgnahoa发布了新的文献求助10
7秒前
8秒前
8秒前
小愚完成签到,获得积分10
10秒前
10秒前
慕青应助科研通管家采纳,获得10
11秒前
打打应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
11秒前
Anlionseas完成签到,获得积分10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
11秒前
自由寄柔应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
xxfsx应助科研通管家采纳,获得10
11秒前
12秒前
Anima应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
xxfsx应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
12秒前
在水一方应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875