自体荧光
医学
原发性甲状旁腺功能亢进
放射科
核医学
病理
外科
物理
量子力学
荧光
作者
Seyma Nazli Avci,Gizem Isiktas,Onuralp Ergun,Eren Berber
摘要
Previous work demonstrated that abnormal versus normal parathyroid glands (PGs) exhibit different patterns of autofluorescence, with former appearing darker and more heterogenous. Our objective was to develop a visual artificial intelligence model using intraoperative autofluorescence signals to predict whether a PG is abnormal (hypersecreting and/or hypercellular) or normal before excision during surgical exploration for primary hyperparathyroidism.A total of 906 intraoperative parathyroid autofluorescence images of 303 patients undergoing parathyroidectomy/thyroidectomy were used to develop model. Autofluorescence image of each PG was uploaded into the visual artificial intelligence platform as abnormal or normal. For deep learning, randomly chosen 80% of data was used for training, 10% for testing, 10% for validation. The area under the receiver operating characteristic (AUROC), area under the precision-recall curve (AUPRC), recall (sensitivity), and precision (positive predictive value) of the model were calculated.AUROC and AUPRC of the model to predict normal and abnormal PGs were 0.90 and 0.93, respectively. Recall and precision of the model were 89% each.Visual artificial intelligence platforms may be used to compare the autofluorescence signal of a given parathyroid gland against a large database. This may be a new adjunctive tool for intraoperative assessment of parathyroid glands during surgical exploration for primary hyperparathyroidism.
科研通智能强力驱动
Strongly Powered by AbleSci AI