A visual deep learning model to predict abnormal versus normal parathyroid glands using intraoperative autofluorescence signals

自体荧光 医学 原发性甲状旁腺功能亢进 放射科 核医学 病理 外科 物理 量子力学 荧光
作者
Seyma Nazli Avci,Gizem Isiktas,Onuralp Ergun,Eren Berber
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:126 (2): 263-267 被引量:10
标识
DOI:10.1002/jso.26884
摘要

Previous work demonstrated that abnormal versus normal parathyroid glands (PGs) exhibit different patterns of autofluorescence, with former appearing darker and more heterogenous. Our objective was to develop a visual artificial intelligence model using intraoperative autofluorescence signals to predict whether a PG is abnormal (hypersecreting and/or hypercellular) or normal before excision during surgical exploration for primary hyperparathyroidism.A total of 906 intraoperative parathyroid autofluorescence images of 303 patients undergoing parathyroidectomy/thyroidectomy were used to develop model. Autofluorescence image of each PG was uploaded into the visual artificial intelligence platform as abnormal or normal. For deep learning, randomly chosen 80% of data was used for training, 10% for testing, 10% for validation. The area under the receiver operating characteristic (AUROC), area under the precision-recall curve (AUPRC), recall (sensitivity), and precision (positive predictive value) of the model were calculated.AUROC and AUPRC of the model to predict normal and abnormal PGs were 0.90 and 0.93, respectively. Recall and precision of the model were 89% each.Visual artificial intelligence platforms may be used to compare the autofluorescence signal of a given parathyroid gland against a large database. This may be a new adjunctive tool for intraoperative assessment of parathyroid glands during surgical exploration for primary hyperparathyroidism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zyqy应助小黄同学采纳,获得10
1秒前
某某发布了新的文献求助10
2秒前
叨叨不叨叨叨叨叨完成签到,获得积分10
3秒前
超帅方盒发布了新的文献求助10
3秒前
苗儿发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
霜打了的葡萄应助Rita采纳,获得10
8秒前
小茹完成签到,获得积分10
8秒前
张才豪完成签到,获得积分20
8秒前
可爱的函函应助小羊采纳,获得10
9秒前
小二郎应助sddq采纳,获得10
11秒前
euphoria发布了新的文献求助10
11秒前
bkagyin应助吉他配三弦采纳,获得10
13秒前
14秒前
坚强的纸飞机完成签到,获得积分10
15秒前
糊涂的雁易应助周凡淇采纳,获得30
15秒前
不配.应助周凡淇采纳,获得10
15秒前
喵喵应助周凡淇采纳,获得10
15秒前
星辰大海应助周凡淇采纳,获得10
15秒前
lixiao应助周凡淇采纳,获得10
15秒前
星辰大海应助周凡淇采纳,获得10
15秒前
充电宝应助周凡淇采纳,获得10
15秒前
小赞完成签到,获得积分10
15秒前
饼饼完成签到 ,获得积分10
18秒前
超帅方盒完成签到,获得积分10
18秒前
中央戏精学院完成签到,获得积分10
19秒前
Rita给Rita的求助进行了留言
20秒前
21秒前
小羊苏西完成签到,获得积分10
21秒前
22秒前
22秒前
不配.应助典雅的凛采纳,获得20
24秒前
26秒前
乔项琦完成签到 ,获得积分20
27秒前
芙瑞发布了新的文献求助10
27秒前
28秒前
28秒前
小赵发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136300
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7781050
捐赠科研通 2443321
什么是DOI,文献DOI怎么找? 1299108
科研通“疑难数据库(出版商)”最低求助积分说明 625345
版权声明 600922