Intrusion detection using multi-objective evolutionary convolutional neural network for Internet of Things in Fog computing

计算机科学 卷积神经网络 入侵检测系统 物联网 进化算法 人工智能 雾计算 延迟(音频) 分类器(UML) 嵌入式系统 电信
作者
Yi Chen,Qiuzhen Lin,Wenhong Wei,Junkai Ji,Ka‐Chun Wong,Carlos A. Coello Coello
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:244: 108505-108505 被引量:55
标识
DOI:10.1016/j.knosys.2022.108505
摘要

Our world is moving fast towards the era of the Internet of Things (IoT), which connects all kinds of devices to digital services and brings significant convenience to our lives. With the rapid increase in the number of devices connected to the IoT, there may exist more network vulnerabilities, resulting in more network attacks. Under this dynamic IoT environment, an effective intrusion detection system (IDS) is urgently needed to detect attacks with low-latency and high accuracy. A number of promising IDSs have been proposed based on deep learning (DL) techniques, but they need to do parameter tuning under different environments, which is very time-consuming. To alleviate this problem, this paper proposes a multi-objective evolutionary convolutional neural network for intrusion detection system, called MECNN, which is run on the fog nodes of Fog computing on IoT. In this approach, convolutional neural network (CNN) is used as the classifier to detect intrusions and the multi-objective evolutionary algorithm based on decomposition (MOEA/D) algorithm is modified to evolve the CNN model, which greatly simplifies the parameter tuning process of DL. To be specific, a novel encoding scheme is first proposed to transform the topological architecture of CNN into a chromosome of MOEA/D and then the two conflicting objectives, i.e., detection performance and model complexity of the CNN model, are simultaneously optimized by MOEA/D, which can obtain a number of IDSs with various detection performance and model complexities. Then, the most suitable MECNN model can be deployed in different fog nodes of Fog computing, providing low-latency and high-accuracy intrusion detection for IoT. Finally, the experimental studies are conducted on two popular datasets (AWID and CIC-IDS2107), which have validated that our MECNN model can improve detection performance and robustness to better protect the IoT when compared to other state-of-the-art IDSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晖菜完成签到,获得积分10
2秒前
8秒前
南巷完成签到 ,获得积分10
10秒前
英俊的铭应助拓跋雨梅采纳,获得10
12秒前
Carol完成签到,获得积分10
13秒前
投篮不起跳完成签到 ,获得积分10
13秒前
15秒前
qinli给qinli的求助进行了留言
15秒前
ysea完成签到,获得积分10
16秒前
99giddens应助超级大猩猩采纳,获得10
17秒前
藏识完成签到,获得积分10
17秒前
Cheshire完成签到,获得积分10
18秒前
20秒前
七个小矮人完成签到 ,获得积分10
21秒前
nan完成签到,获得积分10
23秒前
尊敬乐蕊发布了新的文献求助10
25秒前
Ashley完成签到 ,获得积分10
26秒前
26秒前
害羞的网络完成签到,获得积分10
27秒前
wxm发布了新的文献求助10
27秒前
伊麦香城完成签到,获得积分10
29秒前
周水吉吖完成签到 ,获得积分10
30秒前
追寻绮玉完成签到,获得积分10
30秒前
xshuang完成签到,获得积分10
31秒前
伊麦香城发布了新的文献求助10
31秒前
CodeCraft应助尊敬乐蕊采纳,获得10
32秒前
37秒前
38秒前
超级大猩猩完成签到,获得积分10
39秒前
共享精神应助谦让诗采纳,获得10
40秒前
JL完成签到 ,获得积分10
40秒前
开心的秋寒完成签到 ,获得积分10
42秒前
42秒前
asipilin完成签到,获得积分10
43秒前
44秒前
LYSnow7完成签到 ,获得积分10
44秒前
50秒前
尊敬乐蕊发布了新的文献求助10
50秒前
51秒前
52秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791107
关于积分的说明 7797976
捐赠科研通 2447576
什么是DOI,文献DOI怎么找? 1301949
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194