Intrusion detection using multi-objective evolutionary convolutional neural network for Internet of Things in Fog computing

计算机科学 卷积神经网络 入侵检测系统 物联网 进化算法 人工智能 雾计算 延迟(音频) 分类器(UML) 嵌入式系统 电信
作者
Yi Chen,Qiuzhen Lin,Wenhong Wei,Junkai Ji,Ka‐Chun Wong,Carlos A. Coello Coello
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:244: 108505-108505 被引量:55
标识
DOI:10.1016/j.knosys.2022.108505
摘要

Our world is moving fast towards the era of the Internet of Things (IoT), which connects all kinds of devices to digital services and brings significant convenience to our lives. With the rapid increase in the number of devices connected to the IoT, there may exist more network vulnerabilities, resulting in more network attacks. Under this dynamic IoT environment, an effective intrusion detection system (IDS) is urgently needed to detect attacks with low-latency and high accuracy. A number of promising IDSs have been proposed based on deep learning (DL) techniques, but they need to do parameter tuning under different environments, which is very time-consuming. To alleviate this problem, this paper proposes a multi-objective evolutionary convolutional neural network for intrusion detection system, called MECNN, which is run on the fog nodes of Fog computing on IoT. In this approach, convolutional neural network (CNN) is used as the classifier to detect intrusions and the multi-objective evolutionary algorithm based on decomposition (MOEA/D) algorithm is modified to evolve the CNN model, which greatly simplifies the parameter tuning process of DL. To be specific, a novel encoding scheme is first proposed to transform the topological architecture of CNN into a chromosome of MOEA/D and then the two conflicting objectives, i.e., detection performance and model complexity of the CNN model, are simultaneously optimized by MOEA/D, which can obtain a number of IDSs with various detection performance and model complexities. Then, the most suitable MECNN model can be deployed in different fog nodes of Fog computing, providing low-latency and high-accuracy intrusion detection for IoT. Finally, the experimental studies are conducted on two popular datasets (AWID and CIC-IDS2107), which have validated that our MECNN model can improve detection performance and robustness to better protect the IoT when compared to other state-of-the-art IDSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的老虎完成签到,获得积分10
刚刚
坚强丹雪完成签到,获得积分10
2秒前
4秒前
6秒前
WZ0904发布了新的文献求助10
8秒前
狂野静曼完成签到 ,获得积分10
9秒前
武映易完成签到 ,获得积分10
11秒前
zzz发布了新的文献求助10
12秒前
13秒前
大蒜味酸奶钊完成签到 ,获得积分10
13秒前
鱼宇纸完成签到 ,获得积分10
13秒前
LEE完成签到,获得积分20
13秒前
13秒前
Ava应助无限的绿真采纳,获得10
15秒前
小马甲应助xiongdi521采纳,获得10
15秒前
科研通AI5应助陶醉觅夏采纳,获得200
18秒前
憨鬼憨切发布了新的文献求助10
18秒前
18秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
20秒前
21秒前
22秒前
hh应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
Eva完成签到,获得积分10
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
斯文败类应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
思源应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
清爽老九应助科研通管家采纳,获得20
23秒前
传奇3应助科研通管家采纳,获得10
23秒前
greenPASS666发布了新的文献求助10
23秒前
涂欣桐应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
secbox完成签到,获得积分10
24秒前
刘哈哈发布了新的文献求助30
24秒前
xyzdmmm完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849