Improved DeblurGAN multi-dimensional feature fusion blind demotion blur algorithm

去模糊 人工智能 核(代数) 运动模糊 计算机科学 降职 特征(语言学) 计算机视觉 图像复原 模式识别(心理学) 算法 卷积(计算机科学) 人工神经网络 图像(数学) 数学 图像处理 语言学 哲学 组合数学 政治 政治学 法学
作者
WeiPeng Chen,Qi Cai,Yu Chen,Qianqian Huang,JiaBao Huang
标识
DOI:10.1117/12.2628563
摘要

Demotion blur has always been a classic problem in computer vision. In the past ten years, algorithm research in the field of deblurring can be divided into two categories. One is the non-blind deblurring algorithm based on the calculation of the blur kernel, and the other is the use of neural networks in the absence of information about the blur kernel and cam-era movement under the condition that the blur kernel is unknown. Remove motion blur. For this reason, Kupyn et al. [2] proposed a blind deblurring algorithm based on DeblurGAN. The algorithm can achieve good results in most scenes, but the deblurring effect on blurred objects with smaller scales is not obvious. The details are not prominent enough, and the grid effect is easy to produce. For this reason, this paper modifies its network structure on the basis of DeblurGAN and adds a residual module [3] as its backbone network. This paper uses Inception-ResNet-v2 [9] to extract features at different scales. Then FPN [4] is used for feature fusion, the smaller-scale feature pictures are up-sampled, and then the larger-scale pictures are convolved with the 1*1 size convolution kernel, and finally feature fusion is performed. The traditional multiscale pyramid generates features of different scales on images of different scales, and then predicts the features of different scales separately. The advantage is that the features at different depths of the network are merged, which improves the accuracy. The disadvantage is that the calculation cost is high. The advantage of FPN is that it connects the feature map from top to bottom and reduces the output of feature calculation. The advantage of this is that it can obtain more semantic information of the high-level network without losing the detailed information of the picture. Speed up the training speed and ensure the richness of feature extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的书本完成签到 ,获得积分10
刚刚
于芋菊发布了新的文献求助10
刚刚
rayan发布了新的文献求助10
1秒前
glocon发布了新的文献求助10
1秒前
上官若男应助乐观的非笑采纳,获得10
1秒前
无奈完成签到,获得积分10
3秒前
3秒前
一支欣母沛完成签到,获得积分10
4秒前
射天狼完成签到,获得积分10
6秒前
一眼万年完成签到,获得积分10
7秒前
852应助等待的谷波采纳,获得10
7秒前
7秒前
8秒前
8秒前
samosa发布了新的文献求助10
8秒前
8秒前
9秒前
Hello应助sevten采纳,获得10
10秒前
ww发布了新的文献求助10
10秒前
11秒前
完美世界应助Hosea采纳,获得10
12秒前
尛海完成签到,获得积分10
12秒前
12秒前
Jasper应助玲玲采纳,获得10
12秒前
秋秋完成签到,获得积分10
13秒前
13秒前
13秒前
14秒前
cy发布了新的文献求助10
15秒前
小熊饼干蹦蹦跳完成签到,获得积分10
15秒前
122发布了新的文献求助10
15秒前
无情凉面完成签到,获得积分10
16秒前
程未央_12发布了新的文献求助10
18秒前
十六月亮发布了新的文献求助10
18秒前
19秒前
鲤鱼冰海发布了新的文献求助30
19秒前
20秒前
21秒前
21秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465882
求助须知:如何正确求助?哪些是违规求助? 3058874
关于积分的说明 9063681
捐赠科研通 2749245
什么是DOI,文献DOI怎么找? 1508437
科研通“疑难数据库(出版商)”最低求助积分说明 696907
邀请新用户注册赠送积分活动 696607