Novel classification and risk model based on ferroptosis‐related lncRNAs to predict oncologic outcomes for gastric cancer patients

列线图 癌症 肿瘤科 恶性肿瘤 医学 病态的 弗雷明翰风险评分 内科学 生物信息学 生物 疾病
作者
Qingfang Yue,Jun Bai,Fei Wang,Fei Xue,Lianxiang Li,Xianglong Duan
出处
期刊:Journal of Biochemical and Molecular Toxicology [Wiley]
卷期号:36 (7) 被引量:5
标识
DOI:10.1002/jbt.23052
摘要

Abstract Gastric cancer (GC) is a highly heterogeneous malignancy, characterized by high mortality and poor prognosis. Ferroptosis is a newly defined nonapoptotic programmed cell death mechanism that has been implicated in the development of various pathological conditions. We aimed to identify ferroptosis‐related long noncoding RNA (lncRNAs) that might be used to predict GC prognosis. The data were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus database. Two subtypes, C1 and C2, were identified, which had significant variations in prognosis and immune cell infiltrations. Differentially expressed genes between the subtypes were found to be involved in multiple tumor‐associated pathways. Subsequently, a training dataset and a testing dataset were created from the TCGA dataset. A predictive model for GC patients based on six ferroptosis‐related lncRNAs (including STX18‐AS1, MIR99AHG, LINC01197, LINC00968, LINC00865, and LEF1‐AS1) was developed. The model could stratify patients into a high‐ and low‐risk group, showing good predictive performance. The testing dataset, entire TCGA dataset, and GSE62254 cohort both confirmed the predictive value of the model. Compared to the clinical parameters (including gender, age, and grade), the risk model was an independent risk factor for GC patients. Moreover, a nomogram (containing our risk score model and clinical parameters) was constructed, which might provide great potential to improve prediction accuracy. Moreover, the single‐sample gene set enrichment analysis revealed that the high‐risk group was linked to various signaling pathways involved in the regulation of GC progression. Conclusively, a novel classification and risk model based on ferroptosis‐related lncRNAs that can predict oncologic outcomes for GC patients has been developed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阿牛完成签到,获得积分20
2秒前
3秒前
111111111发布了新的文献求助10
4秒前
4秒前
4秒前
龙华之士完成签到,获得积分10
5秒前
机智的青槐完成签到 ,获得积分10
6秒前
阿牛发布了新的文献求助10
6秒前
虚拟的凡波完成签到,获得积分10
6秒前
pinging应助离线采纳,获得10
6秒前
在水一方应助甜甜晓露采纳,获得10
6秒前
spurs17完成签到,获得积分10
7秒前
黎乐乐完成签到 ,获得积分10
7秒前
miao完成签到,获得积分10
7秒前
8秒前
小郭完成签到 ,获得积分10
8秒前
龙华之士发布了新的文献求助10
8秒前
smile完成签到,获得积分10
8秒前
斯文败类应助动听导师采纳,获得10
9秒前
9秒前
复杂曼梅发布了新的文献求助10
9秒前
迷糊完成签到,获得积分10
10秒前
10秒前
汉堡包应助Rrr采纳,获得10
11秒前
新的心跳发布了新的文献求助10
11秒前
NN应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
今后应助科研通管家采纳,获得30
13秒前
shouyu29应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得60
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808