光催化
材料科学
纳米技术
吸附
表面改性
能量转换
分解水
太阳能
化学工程
催化作用
有机化学
化学
工程类
物理
热力学
生物
生态学
作者
Chengyang Feng,Zhi‐Peng Wu,Kuo‐Wei Huang,Jinhua Ye,Huabin Zhang
标识
DOI:10.1002/adma.202200180
摘要
Abstract 2D materials show many particular properties, such as high surface‐to‐volume ratio, high anisotropic degree, and adjustable chemical functionality. These unique properties in 2D materials have sparked immense interest due to their applications in photocatalytic systems, resulting in significantly enhanced light capture, charge‐transfer kinetics, and surface reaction. Herein, the research progress in 2D photocatalysts based on varied compositions and functions, followed by specific surface modification strategies, is introduced. Fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D‐material‐based photocatalytic system are systemically explored. The examples described here detail the use of 2D materials in various photocatalytic energy‐conversion systems, including water splitting, carbon dioxide reduction, nitrogen fixation, hydrogen peroxide production, and organic synthesis. Finally, by elaborating the challenges and possible solutions for developing these 2D materials, the review is expected to provide some inspiration for the future research of 2D materials used on efficient photocatalytic energy conversions.
科研通智能强力驱动
Strongly Powered by AbleSci AI