黄土
淤泥
石英
地质学
古土壤
长石
矿物学
饱和(图论)
热释光年代测定
光释光
地貌学
古生物学
数学
组合数学
作者
Neda Rahimzadeh,Sumiko Tsukamoto,Junjie Zhang
标识
DOI:10.1016/j.quageo.2022.101276
摘要
Multiple-aliquot regenerative-dose violet stimulated luminescence (MAR-VSL) dating studies of the Chinese loess-palaeosol sequence in Luochuan using sand- and silt-sized quartz have previously produced inconsistent results; the VSL ages were in agreement with their independent ages up to ∼900 ka for sand-sized quartz, whereas the silt-sized VSL ages underestimated the independent chronology beyond ∼100 ka. Here we therefore evaluate the VSL dose response pattern of sand- (63–100 μm) and silt-sized (4–11 μm) quartz grains from the loess-palaeosol sequence in southern Germany in high resolution but with a limited age range up to ∼160 ka. All the samples studied benefit from good age control provided by reliable quartz optically stimulated luminescence (OSL) ages and fading corrected feldspar post-infrared infrared stimulated luminescence at 225 °C (pIRIR225) ages, which can be used for assessing the validity of the estimated VSL ages. The comparison of the MAR standardised dose response curve (DRC) using regeneration doses up to ∼1000 Gy for both grain size fractions demonstrates that they are almost similar in shape with comparable characteristic saturation doses. The comparison of the natural and laboratory generated DRCs of each grain size reveals that they broadly overlap in the low dose range for both fractions, while in the high dose range the deviation between natural and laboratory DRCs is higher for the silt-sized quartz fraction. It is also shown that the magnitude of the characteristic saturation dose is dependent upon the size of the maximum given dose, especially for the silt-sized quartz. The constructed laboratory standardised DRCs to very high doses (up to ∼6000 Gy) showed continuous signal growth at high doses, particularly in the case of silt-sized quartz grains, thereby confirming our previous observation. The sand-sized quartz has a much less pronounced linear growth component and can therefore be considered more suitable for dating samples with equivalent doses falling on the high dose region of the DRC.
科研通智能强力驱动
Strongly Powered by AbleSci AI