LMNA公司
早熟
拉明
生物
核板
表型
内科学
内分泌学
作者
Yuexia Wang,Khurts Shilagardi,Trunee Hsu,Kamsi O Odinammadu,Takamitsu Maruyama,Wei Wu,Chyuan-Sheng Lin,Christopher B Damoci,Eric D Spear,Ji-Yeon Shin,Wei Hsu,Susan Michaelis,Howard J. Worman
标识
DOI:10.1073/pnas.2118695119
摘要
Prelamin A is a farnesylated precursor of lamin A, a nuclear lamina protein. Accumulation of the farnesylated prelamin A variant progerin, with an internal deletion including its processing site, causes Hutchinson–Gilford progeria syndrome. Loss-of-function mutations in ZMPSTE24 , which encodes the prelamin A processing enzyme, lead to accumulation of full-length farnesylated prelamin A and cause related progeroid disorders. Some data suggest that prelamin A also accumulates with physiological aging. Zmpste24 −/− mice die young, at ∼20 wk. Because ZMPSTE24 has functions in addition to prelamin A processing, we generated a mouse model to examine effects solely due to the presence of permanently farnesylated prelamin A. These mice have an L648R amino acid substitution in prelamin A that blocks ZMPSTE24-catalyzed processing to lamin A. The Lmna L648R/L648R mice express only prelamin and no mature protein. Notably, nearly all survive to 65 to 70 wk, with ∼40% of male and 75% of female Lmna L648R/L648R mice having near-normal lifespans of 90 wk (almost 2 y). Starting at ∼10 wk of age, Lmna L648R/L648R mice of both sexes have lower body masses than controls. By ∼20 to 30 wk of age, they exhibit detectable cranial, mandibular, and dental defects similar to those observed in Zmpste24 −/− mice and have decreased vertebral bone density compared to age- and sex-matched controls. Cultured embryonic fibroblasts from Lmna L648R/L648R mice have aberrant nuclear morphology that is reversible by treatment with a protein farnesyltransferase inhibitor. These novel mice provide a model to study the effects of farnesylated prelamin A during physiological aging.
科研通智能强力驱动
Strongly Powered by AbleSci AI