鞍结分岔
数学
跨临界分岔
分叉
分叉理论的生物学应用
非线性系统
应用数学
分岔理论
分岔图
异宿分岔
理论(学习稳定性)
捕食
控制理论(社会学)
计算机科学
控制(管理)
物理
生态学
生物
量子力学
机器学习
人工智能
标识
DOI:10.1080/00036811.2022.2030724
摘要
In this paper, some complicate dynamical behaviors are formulated for a discrete predator–prey model with group defense and nonlinear harvesting in prey. After considering the existence and stability for all of its nonnegative fixed points, our main work is to present those conditions for the occurrences of transcritical bifurcation, saddle-node bifurcation and Neimark–Sacker bifurcation, respectively. Numerical simulations not only verify the theoretical results for saddle-node bifurcation and Neimark–Sacker bifurcation but also display more interesting dynamical properties of the model.
科研通智能强力驱动
Strongly Powered by AbleSci AI