Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study

医学 金标准(测试) 骨科手术 接收机工作特性 射线照相术 卷积神经网络 后纵韧带骨化 深度学习 放射科 核医学 脊髓病 外科 人工智能 脊髓 内科学 精神科 计算机科学
作者
Takahisa Ogawa,Toshitaka Yoshii,Jun Oyama,Nobuhiro Sugimura,Takashi Akada,Takaaki Sugino,Motonori Hashimoto,Shingo Morishita,Takuya Takahashi,Takayuki Motoyoshi,Takuya Oyaizu,Tsuyoshi Yamada,Hiroaki Onuma,Takashi Hirai,Hiroyuki Inose,Yoshikazu Nakajima,Atsushi Okawa
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (6): 934-940 被引量:10
标识
DOI:10.1016/j.spinee.2022.01.004
摘要

Its rare prevalence and subtle radiological changes often lead to difficulties in diagnosing cervical ossification of the posterior longitudinal ligament (OPLL) on plain radiographs. However, OPLL progression may lead to trauma-induced spinal cord injury, resulting in severe paralysis. To address the difficulties in diagnosis, a deep learning approach using a convolutional neural network (CNN) was applied.The aim of our research was to evaluate the performance of a CNN model for diagnosing cervical OPLL.Diagnostic image study.This study included 50 patients with cervical OPLL, and 50 control patients with plain radiographs.For the CNN model performance evaluation, we calculated the area under the receiver operating characteristic curve (AUC). We also compared the sensitivity, specificity, and accuracy of the diagnosis by the CNN with those of general orthopedic surgeons and spine specialists.Computed tomography was used as the gold standard for diagnosis. Radiographs of the cervical spine in neutral, flexion, and extension positions were used for training and validation of the CNN model. We used the deep learning PyTorch framework to construct the CNN architecture.The accuracy of the CNN model was 90% (18/20), with a sensitivity and specificity of 80% and 100%, respectively. In contrast, the mean accuracy of orthopedic surgeons was 70%, with a sensitivity and specificity of 73% (SD: 0.12) and 67% (SD: 0.17), respectively. The mean accuracy of the spine surgeons was 75%, with a sensitivity and specificity of 80% (SD: 0.08) and 70% (SD: 0.08), respectively. The AUC of the CNN model based on the radiographs was 0.924.The CNN model had successful diagnostic accuracy and sufficient specificity in the diagnosis of OPLL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨雨应助王然采纳,获得10
刚刚
bio发布了新的文献求助10
刚刚
yiyi发布了新的文献求助10
刚刚
1秒前
1秒前
微光熠发布了新的文献求助10
2秒前
ycy小菜鸡发布了新的文献求助10
2秒前
mark发布了新的文献求助10
2秒前
小于等于完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
泥石流关注了科研通微信公众号
3秒前
木子完成签到,获得积分10
3秒前
3秒前
俺是大牛马完成签到,获得积分10
4秒前
老艺人发布了新的文献求助10
4秒前
MHX完成签到,获得积分10
4秒前
酷儿发布了新的文献求助30
4秒前
盼夏发布了新的文献求助10
5秒前
5秒前
JamesPei应助PeakKing采纳,获得10
5秒前
北回归线完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
SciGPT应助Darling采纳,获得10
8秒前
zz发布了新的文献求助10
8秒前
活力鸡发布了新的文献求助10
9秒前
谭慧娉发布了新的文献求助10
9秒前
珃苒冉`发布了新的文献求助30
9秒前
Run发布了新的文献求助20
9秒前
Victor完成签到 ,获得积分10
10秒前
NexusExplorer应助vivre223采纳,获得10
11秒前
小蘑菇应助季思锐采纳,获得10
11秒前
OPV发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003