Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study

医学 金标准(测试) 骨科手术 接收机工作特性 射线照相术 卷积神经网络 后纵韧带骨化 深度学习 放射科 核医学 脊髓病 外科 人工智能 脊髓 内科学 精神科 计算机科学
作者
Takahisa Ogawa,Toshitaka Yoshii,Jun Oyama,Nobuhiro Sugimura,Takashi Akada,Takaaki Sugino,Motonori Hashimoto,Shingo Morishita,Takuya Takahashi,Takayuki Motoyoshi,Takuya Oyaizu,Tsuyoshi Yamada,Hiroaki Onuma,Takashi Hirai,Hiroyuki Inose,Yoshikazu Nakajima,Atsushi Okawa
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (6): 934-940 被引量:7
标识
DOI:10.1016/j.spinee.2022.01.004
摘要

Its rare prevalence and subtle radiological changes often lead to difficulties in diagnosing cervical ossification of the posterior longitudinal ligament (OPLL) on plain radiographs. However, OPLL progression may lead to trauma-induced spinal cord injury, resulting in severe paralysis. To address the difficulties in diagnosis, a deep learning approach using a convolutional neural network (CNN) was applied.The aim of our research was to evaluate the performance of a CNN model for diagnosing cervical OPLL.Diagnostic image study.This study included 50 patients with cervical OPLL, and 50 control patients with plain radiographs.For the CNN model performance evaluation, we calculated the area under the receiver operating characteristic curve (AUC). We also compared the sensitivity, specificity, and accuracy of the diagnosis by the CNN with those of general orthopedic surgeons and spine specialists.Computed tomography was used as the gold standard for diagnosis. Radiographs of the cervical spine in neutral, flexion, and extension positions were used for training and validation of the CNN model. We used the deep learning PyTorch framework to construct the CNN architecture.The accuracy of the CNN model was 90% (18/20), with a sensitivity and specificity of 80% and 100%, respectively. In contrast, the mean accuracy of orthopedic surgeons was 70%, with a sensitivity and specificity of 73% (SD: 0.12) and 67% (SD: 0.17), respectively. The mean accuracy of the spine surgeons was 75%, with a sensitivity and specificity of 80% (SD: 0.08) and 70% (SD: 0.08), respectively. The AUC of the CNN model based on the radiographs was 0.924.The CNN model had successful diagnostic accuracy and sufficient specificity in the diagnosis of OPLL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhhhh发布了新的文献求助10
2秒前
zho发布了新的文献求助10
2秒前
醉爱天下完成签到,获得积分10
2秒前
4秒前
Lyuhng+1完成签到 ,获得积分10
5秒前
Huang发布了新的文献求助10
5秒前
与我月初完成签到,获得积分10
5秒前
冲塔亚德完成签到 ,获得积分10
5秒前
直到星星打烊完成签到,获得积分10
6秒前
8秒前
雪落发布了新的文献求助10
9秒前
cc完成签到,获得积分10
9秒前
9秒前
10秒前
12秒前
13秒前
温暖的路灯完成签到,获得积分10
13秒前
13秒前
史昊昊发布了新的文献求助30
13秒前
Jeamren发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
jkaaa发布了新的文献求助30
18秒前
艾伦完成签到,获得积分10
19秒前
ibigbird发布了新的文献求助10
19秒前
fdsdvczx发布了新的文献求助10
19秒前
科研通AI2S应助wang5945采纳,获得10
20秒前
深情安青应助史昊昊采纳,获得10
22秒前
艾伦发布了新的文献求助10
24秒前
111完成签到,获得积分10
24秒前
大壳完成签到 ,获得积分10
25秒前
水心完成签到 ,获得积分10
26秒前
Hammerdai发布了新的文献求助10
26秒前
26秒前
陈泽宇发布了新的文献求助20
26秒前
史昊昊完成签到,获得积分10
26秒前
徐璟发布了新的文献求助10
26秒前
快乐小子发布了新的文献求助10
26秒前
四木相对完成签到 ,获得积分10
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245843
求助须知:如何正确求助?哪些是违规求助? 2889475
关于积分的说明 8258621
捐赠科研通 2557868
什么是DOI,文献DOI怎么找? 1386710
科研通“疑难数据库(出版商)”最低求助积分说明 650327
邀请新用户注册赠送积分活动 626685