Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study

医学 金标准(测试) 骨科手术 接收机工作特性 射线照相术 卷积神经网络 后纵韧带骨化 深度学习 放射科 核医学 脊髓病 外科 人工智能 脊髓 内科学 精神科 计算机科学
作者
Takahisa Ogawa,Toshitaka Yoshii,Jun Oyama,Nobuhiro Sugimura,Takashi Akada,Takaaki Sugino,Motonori Hashimoto,Shingo Morishita,Takuya Takahashi,Takayuki Motoyoshi,Takuya Oyaizu,Tsuyoshi Yamada,Hiroaki Onuma,Takashi Hirai,Hiroyuki Inose,Yoshikazu Nakajima,Atsushi Okawa
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (6): 934-940 被引量:10
标识
DOI:10.1016/j.spinee.2022.01.004
摘要

Its rare prevalence and subtle radiological changes often lead to difficulties in diagnosing cervical ossification of the posterior longitudinal ligament (OPLL) on plain radiographs. However, OPLL progression may lead to trauma-induced spinal cord injury, resulting in severe paralysis. To address the difficulties in diagnosis, a deep learning approach using a convolutional neural network (CNN) was applied.The aim of our research was to evaluate the performance of a CNN model for diagnosing cervical OPLL.Diagnostic image study.This study included 50 patients with cervical OPLL, and 50 control patients with plain radiographs.For the CNN model performance evaluation, we calculated the area under the receiver operating characteristic curve (AUC). We also compared the sensitivity, specificity, and accuracy of the diagnosis by the CNN with those of general orthopedic surgeons and spine specialists.Computed tomography was used as the gold standard for diagnosis. Radiographs of the cervical spine in neutral, flexion, and extension positions were used for training and validation of the CNN model. We used the deep learning PyTorch framework to construct the CNN architecture.The accuracy of the CNN model was 90% (18/20), with a sensitivity and specificity of 80% and 100%, respectively. In contrast, the mean accuracy of orthopedic surgeons was 70%, with a sensitivity and specificity of 73% (SD: 0.12) and 67% (SD: 0.17), respectively. The mean accuracy of the spine surgeons was 75%, with a sensitivity and specificity of 80% (SD: 0.08) and 70% (SD: 0.08), respectively. The AUC of the CNN model based on the radiographs was 0.924.The CNN model had successful diagnostic accuracy and sufficient specificity in the diagnosis of OPLL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助cherish采纳,获得10
1秒前
1秒前
2秒前
111完成签到 ,获得积分10
3秒前
5秒前
刘海杨发布了新的文献求助10
6秒前
浮游应助饱满服饰采纳,获得10
7秒前
大聪明应助饱满服饰采纳,获得10
7秒前
科研通AI6应助9527King采纳,获得10
7秒前
hhhhhh完成签到,获得积分10
7秒前
7秒前
如意的书文完成签到,获得积分10
8秒前
ShiyuZuo完成签到,获得积分10
8秒前
初衷未央发布了新的文献求助10
9秒前
9秒前
默默发布了新的文献求助10
11秒前
12秒前
ccm发布了新的文献求助10
13秒前
13秒前
今后应助科研通管家采纳,获得10
14秒前
桐桐应助科研通管家采纳,获得30
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
大个应助科研通管家采纳,获得10
14秒前
zhonglv7应助科研通管家采纳,获得10
14秒前
英姑应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得20
14秒前
14秒前
无花果应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得50
14秒前
yyi1应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
西门访天应助故意的驳采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
cherish发布了新的文献求助10
15秒前
完美世界应助科研通管家采纳,获得10
15秒前
15秒前
Hilda007应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360281
求助须知:如何正确求助?哪些是违规求助? 4490974
关于积分的说明 13980731
捐赠科研通 4393548
什么是DOI,文献DOI怎么找? 2413487
邀请新用户注册赠送积分活动 1406306
关于科研通互助平台的介绍 1380773