Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study

医学 金标准(测试) 骨科手术 接收机工作特性 射线照相术 卷积神经网络 后纵韧带骨化 深度学习 放射科 核医学 脊髓病 外科 人工智能 脊髓 内科学 精神科 计算机科学
作者
Takahisa Ogawa,Toshitaka Yoshii,Jun Oyama,Nobuhiro Sugimura,Takashi Akada,Takaaki Sugino,Motonori Hashimoto,Shingo Morishita,Takuya Takahashi,Takayuki Motoyoshi,Takuya Oyaizu,Tsuyoshi Yamada,Hiroaki Onuma,Takashi Hirai,Hiroyuki Inose,Yoshikazu Nakajima,Atsushi Okawa
出处
期刊:The Spine Journal [Elsevier BV]
卷期号:22 (6): 934-940 被引量:10
标识
DOI:10.1016/j.spinee.2022.01.004
摘要

Its rare prevalence and subtle radiological changes often lead to difficulties in diagnosing cervical ossification of the posterior longitudinal ligament (OPLL) on plain radiographs. However, OPLL progression may lead to trauma-induced spinal cord injury, resulting in severe paralysis. To address the difficulties in diagnosis, a deep learning approach using a convolutional neural network (CNN) was applied.The aim of our research was to evaluate the performance of a CNN model for diagnosing cervical OPLL.Diagnostic image study.This study included 50 patients with cervical OPLL, and 50 control patients with plain radiographs.For the CNN model performance evaluation, we calculated the area under the receiver operating characteristic curve (AUC). We also compared the sensitivity, specificity, and accuracy of the diagnosis by the CNN with those of general orthopedic surgeons and spine specialists.Computed tomography was used as the gold standard for diagnosis. Radiographs of the cervical spine in neutral, flexion, and extension positions were used for training and validation of the CNN model. We used the deep learning PyTorch framework to construct the CNN architecture.The accuracy of the CNN model was 90% (18/20), with a sensitivity and specificity of 80% and 100%, respectively. In contrast, the mean accuracy of orthopedic surgeons was 70%, with a sensitivity and specificity of 73% (SD: 0.12) and 67% (SD: 0.17), respectively. The mean accuracy of the spine surgeons was 75%, with a sensitivity and specificity of 80% (SD: 0.08) and 70% (SD: 0.08), respectively. The AUC of the CNN model based on the radiographs was 0.924.The CNN model had successful diagnostic accuracy and sufficient specificity in the diagnosis of OPLL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Drew11完成签到,获得积分10
1秒前
YouNG发布了新的文献求助10
1秒前
天天快乐应助任性的咖啡采纳,获得10
2秒前
3秒前
3秒前
4秒前
开心发布了新的文献求助10
4秒前
杨欣悦完成签到,获得积分10
4秒前
4秒前
7秒前
hy发布了新的文献求助10
7秒前
7秒前
花间酒完成签到 ,获得积分10
7秒前
7秒前
大学霸关注了科研通微信公众号
8秒前
Ava应助jeronimo采纳,获得20
8秒前
8秒前
清樾完成签到 ,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助50
8秒前
爆米花应助11采纳,获得10
8秒前
双桅船完成签到,获得积分10
8秒前
wayched完成签到,获得积分10
10秒前
mlg1552003发布了新的文献求助10
10秒前
花间酒关注了科研通微信公众号
12秒前
14秒前
Sunny发布了新的文献求助10
14秒前
14秒前
瘦瘦慕凝发布了新的文献求助10
15秒前
sheldoo完成签到 ,获得积分10
16秒前
小周发布了新的文献求助20
17秒前
17秒前
Orange应助生米A吴采纳,获得10
18秒前
秀丽奎完成签到 ,获得积分10
18秒前
DrDong98完成签到,获得积分10
18秒前
CodeCraft应助依紫采纳,获得10
18秒前
18秒前
兹恩发布了新的文献求助10
19秒前
爆米花应助不扯先生采纳,获得10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883810
求助须知:如何正确求助?哪些是违规求助? 4169256
关于积分的说明 12936859
捐赠科研通 3929611
什么是DOI,文献DOI怎么找? 2156162
邀请新用户注册赠送积分活动 1174593
关于科研通互助平台的介绍 1079367