Detecting ossification of the posterior longitudinal ligament on plain radiographs using a deep convolutional neural network: a pilot study

医学 金标准(测试) 骨科手术 接收机工作特性 射线照相术 卷积神经网络 后纵韧带骨化 深度学习 放射科 核医学 脊髓病 外科 人工智能 脊髓 内科学 精神科 计算机科学
作者
Takahisa Ogawa,Toshitaka Yoshii,Jun Oyama,Nobuhiro Sugimura,Takashi Akada,Takaaki Sugino,Motonori Hashimoto,Shingo Morishita,Takuya Takahashi,Takayuki Motoyoshi,Takuya Oyaizu,Tsuyoshi Yamada,Hiroaki Onuma,Takashi Hirai,Hiroyuki Inose,Yoshikazu Nakajima,Atsushi Okawa
出处
期刊:The Spine Journal [Elsevier]
卷期号:22 (6): 934-940 被引量:10
标识
DOI:10.1016/j.spinee.2022.01.004
摘要

Its rare prevalence and subtle radiological changes often lead to difficulties in diagnosing cervical ossification of the posterior longitudinal ligament (OPLL) on plain radiographs. However, OPLL progression may lead to trauma-induced spinal cord injury, resulting in severe paralysis. To address the difficulties in diagnosis, a deep learning approach using a convolutional neural network (CNN) was applied.The aim of our research was to evaluate the performance of a CNN model for diagnosing cervical OPLL.Diagnostic image study.This study included 50 patients with cervical OPLL, and 50 control patients with plain radiographs.For the CNN model performance evaluation, we calculated the area under the receiver operating characteristic curve (AUC). We also compared the sensitivity, specificity, and accuracy of the diagnosis by the CNN with those of general orthopedic surgeons and spine specialists.Computed tomography was used as the gold standard for diagnosis. Radiographs of the cervical spine in neutral, flexion, and extension positions were used for training and validation of the CNN model. We used the deep learning PyTorch framework to construct the CNN architecture.The accuracy of the CNN model was 90% (18/20), with a sensitivity and specificity of 80% and 100%, respectively. In contrast, the mean accuracy of orthopedic surgeons was 70%, with a sensitivity and specificity of 73% (SD: 0.12) and 67% (SD: 0.17), respectively. The mean accuracy of the spine surgeons was 75%, with a sensitivity and specificity of 80% (SD: 0.08) and 70% (SD: 0.08), respectively. The AUC of the CNN model based on the radiographs was 0.924.The CNN model had successful diagnostic accuracy and sufficient specificity in the diagnosis of OPLL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ff发布了新的文献求助10
1秒前
氧化钙发布了新的文献求助10
1秒前
姚老表完成签到,获得积分10
1秒前
年轻道之发布了新的文献求助10
1秒前
balabala完成签到,获得积分10
1秒前
sjc发布了新的文献求助10
1秒前
求助人员发布了新的文献求助10
2秒前
皮三问完成签到,获得积分10
2秒前
2秒前
ttrr完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研通AI6.1应助雨上悲采纳,获得10
2秒前
3秒前
3秒前
3秒前
今后应助童童采纳,获得30
3秒前
4秒前
在水一方应助隐形的星月采纳,获得10
5秒前
尘染发布了新的文献求助10
5秒前
氧化钙完成签到,获得积分20
6秒前
6秒前
6秒前
共享精神应助Vaeling采纳,获得10
6秒前
11完成签到,获得积分10
7秒前
田様应助陈一采纳,获得30
7秒前
8秒前
len完成签到,获得积分10
8秒前
8秒前
9秒前
chensiying完成签到 ,获得积分10
9秒前
思与省完成签到,获得积分10
9秒前
9秒前
10秒前
小胡发布了新的文献求助10
10秒前
11发布了新的文献求助10
10秒前
tylerguillam完成签到 ,获得积分10
11秒前
12秒前
小蘑菇应助浙江嘉兴采纳,获得10
12秒前
学术小白完成签到,获得积分10
12秒前
自然墨镜应助11采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751492
求助须知:如何正确求助?哪些是违规求助? 5468644
关于积分的说明 15370160
捐赠科研通 4890643
什么是DOI,文献DOI怎么找? 2629816
邀请新用户注册赠送积分活动 1578002
关于科研通互助平台的介绍 1534196