已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Influences of assembly pressure and flow channel size on performances of proton exchange membrane fuel cells based on a multi-model

质子交换膜燃料电池 流量(数学) 燃料电池 频道(广播) 化学 材料科学 机械 化学工程 计算机科学 物理 工程类 电信 生物化学
作者
Lei Shi,Sichuan Xu,Jinling Liu
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:47 (12): 7902-7914 被引量:25
标识
DOI:10.1016/j.ijhydene.2021.12.097
摘要

In this work, assembly pressure and flow channel size on proton exchange membrane fuel cell performance are optimized by means of a multi-model. Based on stress-strain data of the SGL-22BB GDL obtained from its initial compression experiments, Young's modulus with different ranges of assembly pressure fits well through modeling. A mechanical model is established to analyze influences of assembly pressure on various gas diffusion layer parameters. Moreover, a CFD calculation model with different assembly pressures, channel width, and channel depth are established to calculate PEMFC performances. Furthermore, a BP neural network model is utilized to explore optimal combination of assembly pressure, channel width and channel depth. Finally, the CFD model is used to validate effect of size optimization on PEMFC performance. Results indicate that gap change of GDL below bipolar ribs is more remarkable than that below channels under action of the assembly pressure, making liquid water easily transported under high porosity, which is conducive to liquid water to the channels, reduces the accumulation of liquid water under the ribs, and enhances water removal in the PEMFC. Affected by the assembly force, change of GDL porosity affects its diffusion rate, permeability and other parameters, which is not conducive to mass transfer in GDL. Optimizing the depth and different dimensions through width of the flow field can effectively compensate for this effect. Therefore, the PEMFC performance can be enhanced through the comprehensive optimization of the assembly force, flow channel width and flow channel depth. The optimal parameter is obtained when assembly pressure, channel width and channel depth are set as 0.6 MPa, 0.8 mm, and 0.8 mm, respectively. The parameter optimization enhances the mass transfer, impedance, and electrochemical characteristics of PEMFC. Besides, it effectively enhances the quality transfer efficiency inside GDL, prevents flooding, and reduces concentration loss and ohmic loss. • Influences of assembly pressure and flow channel size on PEMFC performances are investigated. • Initial compression parameters of SGL-22BB GDL makes a mechanical model for the GDL close to reality. • A multi-parameter optimization method based on BP neural network is proposed. • Mass transfer, impedance and electrochemical characteristics of PEMFC are improved through optimization of the parameters.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beloved完成签到 ,获得积分10
刚刚
刚刚
热心的冬菱完成签到 ,获得积分10
刚刚
lhy12345完成签到 ,获得积分10
1秒前
刺1656完成签到,获得积分10
1秒前
清新的初雪完成签到 ,获得积分10
1秒前
Lee完成签到 ,获得积分10
2秒前
starlight完成签到,获得积分10
2秒前
无何不可完成签到 ,获得积分10
2秒前
WBC完成签到,获得积分20
3秒前
yuan完成签到 ,获得积分10
3秒前
叼面包的数学狗完成签到 ,获得积分10
4秒前
小歘歘完成签到 ,获得积分10
4秒前
云上人完成签到 ,获得积分10
4秒前
山东老铁完成签到 ,获得积分10
4秒前
简单梦秋发布了新的文献求助10
4秒前
haodian完成签到 ,获得积分10
4秒前
Skymi完成签到,获得积分10
5秒前
multimodal完成签到 ,获得积分0
5秒前
理理完成签到 ,获得积分10
5秒前
Juvenilesy完成签到 ,获得积分10
5秒前
甜甜纸飞机完成签到 ,获得积分10
5秒前
良月完成签到 ,获得积分10
6秒前
小智完成签到 ,获得积分10
6秒前
快乐的素完成签到 ,获得积分10
6秒前
keep完成签到,获得积分10
6秒前
UU完成签到 ,获得积分10
6秒前
三个气的大门完成签到 ,获得积分10
6秒前
乐枫完成签到 ,获得积分10
7秒前
领导范儿应助逆天了呀采纳,获得10
7秒前
欣雪完成签到 ,获得积分10
7秒前
羊村霸总懒大王完成签到 ,获得积分10
8秒前
lzl008完成签到 ,获得积分10
8秒前
虚心的砖家完成签到,获得积分10
8秒前
YE完成签到 ,获得积分10
8秒前
双眼皮跳蚤完成签到,获得积分0
8秒前
ahaaa完成签到 ,获得积分10
9秒前
小谢同学完成签到 ,获得积分10
9秒前
疯狂的凡梦完成签到 ,获得积分10
9秒前
zy完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5663892
求助须知:如何正确求助?哪些是违规求助? 4854151
关于积分的说明 15106245
捐赠科研通 4822200
什么是DOI,文献DOI怎么找? 2581283
邀请新用户注册赠送积分活动 1535500
关于科研通互助平台的介绍 1493747

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10