Causal Feature Selection with Missing Data

特征选择 马尔可夫毯 缺少数据 插补(统计学) 计算机科学 人工智能 机器学习 数据挖掘 特征(语言学) 估计员 模式识别(心理学) 马尔可夫链 马尔可夫模型 数学 马尔可夫性质 统计 哲学 语言学
作者
Ke Yu,Yajing Yang,Wei Ding
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:16 (4): 1-24 被引量:13
标识
DOI:10.1145/3488055
摘要

Causal feature selection aims at learning the Markov blanket (MB) of a class variable for feature selection. The MB of a class variable implies the local causal structure among the class variable and its MB and all other features are probabilistically independent of the class variable conditioning on its MB, this enables causal feature selection to identify potential causal features for feature selection for building robust and physically meaningful prediction models. Missing data, ubiquitous in many real-world applications, remain an open research problem in causal feature selection due to its technical complexity. In this article, we discuss a novel multiple imputation MB (MimMB) framework for causal feature selection with missing data. MimMB integrates Data Imputation with MB Learning in a unified framework to enable the two key components to engage with each other. MB Learning enables Data Imputation in a potentially causal feature space for achieving accurate data imputation, while accurate Data Imputation helps MB Learning identify a reliable MB of the class variable in turn. Then, we further design an enhanced kNN estimator for imputing missing values and instantiate the MimMB. In our comprehensively experimental evaluation, our new approach can effectively learn the MB of a given variable in a Bayesian network and outperforms other rival algorithms using synthetic and real-world datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
瀼瀼完成签到,获得积分10
2秒前
加油完成签到,获得积分10
2秒前
无花果应助栾欣怡采纳,获得10
2秒前
kaiqiang发布了新的文献求助10
3秒前
三杯薄荷水完成签到,获得积分10
4秒前
唔呜無完成签到 ,获得积分10
5秒前
丰荣完成签到,获得积分20
5秒前
爱喝酒的酒葫芦完成签到,获得积分10
5秒前
小白完成签到,获得积分10
7秒前
7秒前
哈哈哈哈发布了新的文献求助10
8秒前
8秒前
kaiqiang完成签到,获得积分20
9秒前
10秒前
Sun完成签到,获得积分10
10秒前
10秒前
小罗发布了新的文献求助10
11秒前
11秒前
rose发布了新的文献求助10
12秒前
祺Q发布了新的文献求助10
13秒前
13秒前
13秒前
zhangxiao123发布了新的文献求助10
14秒前
zhx发布了新的文献求助10
14秒前
杨鹏展发布了新的文献求助10
14秒前
xingfangshu完成签到,获得积分10
14秒前
完美世界应助香妃采纳,获得10
15秒前
Sun发布了新的文献求助10
16秒前
无算浮白发布了新的文献求助10
16秒前
NexusExplorer应助denghn采纳,获得10
17秒前
溪氤完成签到 ,获得积分10
17秒前
18秒前
小龙完成签到,获得积分10
18秒前
18秒前
研友_VZG7GZ应助zhangxiao123采纳,获得10
21秒前
22秒前
22秒前
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939