DensER: Density-imbalance-Eased Representation for LiDAR-based Whole Scene Upsampling

点云 增采样 激光雷达 计算机科学 代表(政治) 人工智能 计算机视觉 点(几何) 财产(哲学) 对象(语法) 遥感 图像(数学) 地理 几何学 数学 认识论 法学 哲学 政治 政治学
作者
Tso-Yuan Chen,Ching-Chun Hsiao,Wen-Huang Cheng,Hong-Han Shuai,Peter Chen,Ching-Chun Huang
标识
DOI:10.1109/vcip53242.2021.9675334
摘要

With the development of depth sensors, 3D point cloud upsampling that generates a high-resolution point cloud given a sparse input becomes emergent. However, many previous works focused on single 3D object reconstruction and refinement. Although a few recent works began to discuss 3D structure refine-ment for a more complex scene, they do not target LiDAR-based point clouds, which have density imbalance issues from near to far. This paper proposed DensER, a Density-imbalance-Eased regional Representation. Notably, to learn robust representations and model local geometry under imbalance point density, we designed density-aware multiple receptive fields to extract the regional features. Moreover, founded on the patch reoccurrence property of a nature scene, we proposed a density-aided attentive module to enrich the extracted features of point-sparse areas by referring to other non-local regions. Finally, by coupling with novel manifold-based upsamplers, DensER shows the ability to super-resolve LiDAR-based whole-scene point clouds. The exper-imental results show DensER outperforms related works both in qualitative and quantitative evaluation. We also demonstrate that the enhanced point clouds can improve downstream tasks such as 3D object detection and depth completion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神可馨完成签到 ,获得积分10
刚刚
Hangerli发布了新的文献求助20
刚刚
HealthyCH完成签到,获得积分10
刚刚
li完成签到,获得积分10
1秒前
2秒前
ononon发布了新的文献求助10
4秒前
4秒前
liu完成签到,获得积分10
6秒前
LWJ发布了新的文献求助10
7秒前
8秒前
大反应釜完成签到,获得积分10
8秒前
TT发布了新的文献求助10
11秒前
Jenny发布了新的文献求助10
13秒前
13秒前
完美凝竹发布了新的文献求助10
13秒前
我是站长才怪应助细腻沅采纳,获得10
14秒前
JG完成签到 ,获得积分10
14秒前
hhh完成签到,获得积分20
14秒前
科研通AI5应助想瘦的海豹采纳,获得10
15秒前
随性完成签到 ,获得积分10
15秒前
自由的信仰完成签到,获得积分10
16秒前
18秒前
19秒前
19秒前
夏夏发布了新的文献求助10
20秒前
打打应助Hangerli采纳,获得10
22秒前
完美凝竹完成签到,获得积分10
23秒前
zfzf0422发布了新的文献求助10
24秒前
蜘蛛道理完成签到 ,获得积分10
24秒前
冷傲迎梦发布了新的文献求助10
25秒前
852应助MEME采纳,获得10
25秒前
Godzilla发布了新的文献求助10
25秒前
大模型应助咕噜仔采纳,获得10
26秒前
蒋时晏应助pharmstudent采纳,获得30
26秒前
27秒前
忘羡222发布了新的文献求助20
28秒前
魏伯安发布了新的文献求助10
28秒前
29秒前
不爱吃糖完成签到,获得积分10
29秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824