Industrial object and defect recognition utilizing multilevel feature extraction from industrial scenes with Deep Learning approach

计算机科学 人工智能 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 特征(语言学) 深度学习 对象(语法) 计算机视觉 萃取(化学) 化学 语言学 色谱法 哲学
作者
Ioannis D. Apostolopoulos,Mpesiana A. Tzani
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Science+Business Media]
卷期号:14 (8): 10263-10276 被引量:29
标识
DOI:10.1007/s12652-021-03688-7
摘要

Modern industry requires modern solutions for monitoring the automatic production of goods and detecting defected materials. Smart monitoring of the functionality of the mechanical parts of technology systems or machines is a mandatory step towards automatic production. Deep Learning has proven its efficiency in feature extraction from images, videos and text, thereby succeeding in various object detection, recognition, segmentation and classification tasks. Despite its advances, little has been investigated about the effectiveness of specially designed Convolutional Neural Networks (CNNs) for defect detection and industrial object recognition. In the particular study, we employed six publicly available industrial-related image datasets, containing defected materials and industrial tools, or engine parts, aiming to develop a specialized model to classify them. Motivated by the success of the Virtual Geometry Group (VGG) network, we propose a modified version of it, called Multipath VGG19, which allows for extra local and global feature extraction (multi-level feature extraction) by making use of several processing paths. The extra features are fused via concatenation. The experiments verified the effectiveness of MVGG19 over the baseline VGG19. Specifically, top classification performance was achieved in five of the six image datasets, whilst the average classification improvement was 6.95%. MVGG19 also showed better overall stability and robustness to dataset variation, compared to other baseline state-of-the-art CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鉴定为学计算学的完成签到,获得积分10
1秒前
liuyx完成签到 ,获得积分10
1秒前
乐乐应助宋子琛采纳,获得10
2秒前
2秒前
科研乞丐应助来了采纳,获得20
3秒前
3秒前
3秒前
listen完成签到,获得积分20
3秒前
科研通AI2S应助qweasdzxcqwe采纳,获得10
3秒前
4秒前
4秒前
风趣夜云完成签到,获得积分10
4秒前
Stroeve完成签到,获得积分10
4秒前
diaoyirui完成签到,获得积分10
6秒前
子车烙完成签到,获得积分10
6秒前
Lenny发布了新的文献求助30
7秒前
7秒前
SYozi发布了新的文献求助10
7秒前
夏夏发布了新的文献求助10
8秒前
iKYy发布了新的文献求助10
8秒前
汉堡包应助123采纳,获得10
8秒前
慕青应助子车烙采纳,获得10
9秒前
英俊的铭应助小宝采纳,获得10
10秒前
11秒前
QingMRI发布了新的文献求助10
11秒前
小咩完成签到 ,获得积分20
12秒前
独特的鹅完成签到,获得积分10
13秒前
Rondab应助七曜采纳,获得10
13秒前
13秒前
积极的罡完成签到 ,获得积分10
13秒前
彭于晏应助林夕君采纳,获得10
14秒前
缥缈的寻琴应助郴欧尼采纳,获得10
15秒前
hua应助时光轴采纳,获得10
16秒前
16秒前
四辈完成签到,获得积分10
17秒前
番茄儿番茄完成签到,获得积分10
17秒前
小蘑菇应助风趣的傲之采纳,获得10
18秒前
18秒前
研友_VZG7GZ应助丫丫采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014