Industrial object and defect recognition utilizing multilevel feature extraction from industrial scenes with Deep Learning approach

计算机科学 人工智能 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 特征(语言学) 深度学习 对象(语法) 计算机视觉 萃取(化学) 化学 色谱法 语言学 哲学
作者
Ioannis D. Apostolopoulos,Mpesiana A. Tzani
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:14 (8): 10263-10276 被引量:29
标识
DOI:10.1007/s12652-021-03688-7
摘要

Modern industry requires modern solutions for monitoring the automatic production of goods and detecting defected materials. Smart monitoring of the functionality of the mechanical parts of technology systems or machines is a mandatory step towards automatic production. Deep Learning has proven its efficiency in feature extraction from images, videos and text, thereby succeeding in various object detection, recognition, segmentation and classification tasks. Despite its advances, little has been investigated about the effectiveness of specially designed Convolutional Neural Networks (CNNs) for defect detection and industrial object recognition. In the particular study, we employed six publicly available industrial-related image datasets, containing defected materials and industrial tools, or engine parts, aiming to develop a specialized model to classify them. Motivated by the success of the Virtual Geometry Group (VGG) network, we propose a modified version of it, called Multipath VGG19, which allows for extra local and global feature extraction (multi-level feature extraction) by making use of several processing paths. The extra features are fused via concatenation. The experiments verified the effectiveness of MVGG19 over the baseline VGG19. Specifically, top classification performance was achieved in five of the six image datasets, whilst the average classification improvement was 6.95%. MVGG19 also showed better overall stability and robustness to dataset variation, compared to other baseline state-of-the-art CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
义气莫茗发布了新的文献求助10
刚刚
无花果应助mayun95采纳,获得10
刚刚
狂野萤给abby的求助进行了留言
1秒前
Sakurasamada完成签到,获得积分10
1秒前
jiejie发布了新的文献求助10
2秒前
2秒前
lyl发布了新的文献求助10
2秒前
董嘉景完成签到,获得积分10
3秒前
Ber发布了新的文献求助10
3秒前
丁言笑发布了新的文献求助10
3秒前
早日成发布了新的文献求助10
3秒前
3秒前
冯梦颖发布了新的文献求助10
3秒前
QIQI发布了新的文献求助10
4秒前
5秒前
5秒前
Lii开心发布了新的文献求助30
7秒前
7秒前
8秒前
深情安青应助开朗的幻桃采纳,获得10
9秒前
耍酷问兰发布了新的文献求助10
10秒前
111完成签到,获得积分10
10秒前
10秒前
cola121发布了新的文献求助10
10秒前
宋宋宋2完成签到,获得积分10
11秒前
jelly10发布了新的文献求助30
11秒前
Lucas应助失眠的夏柳采纳,获得10
12秒前
打打应助撖堡包采纳,获得30
12秒前
laruijoint完成签到,获得积分10
13秒前
超级幼旋应助迷路的夏之采纳,获得10
13秒前
14秒前
zjtttt发布了新的文献求助10
14秒前
在水一方应助jiejie采纳,获得10
14秒前
14秒前
科目三应助拼搏幻翠采纳,获得50
15秒前
15秒前
15秒前
晟sheng完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594359
求助须知:如何正确求助?哪些是违规求助? 4680082
关于积分的说明 14812808
捐赠科研通 4646997
什么是DOI,文献DOI怎么找? 2534901
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469514