亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Industrial object and defect recognition utilizing multilevel feature extraction from industrial scenes with Deep Learning approach

计算机科学 人工智能 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 特征(语言学) 深度学习 对象(语法) 计算机视觉 萃取(化学) 化学 色谱法 语言学 哲学
作者
Ioannis D. Apostolopoulos,Mpesiana A. Tzani
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:14 (8): 10263-10276 被引量:29
标识
DOI:10.1007/s12652-021-03688-7
摘要

Modern industry requires modern solutions for monitoring the automatic production of goods and detecting defected materials. Smart monitoring of the functionality of the mechanical parts of technology systems or machines is a mandatory step towards automatic production. Deep Learning has proven its efficiency in feature extraction from images, videos and text, thereby succeeding in various object detection, recognition, segmentation and classification tasks. Despite its advances, little has been investigated about the effectiveness of specially designed Convolutional Neural Networks (CNNs) for defect detection and industrial object recognition. In the particular study, we employed six publicly available industrial-related image datasets, containing defected materials and industrial tools, or engine parts, aiming to develop a specialized model to classify them. Motivated by the success of the Virtual Geometry Group (VGG) network, we propose a modified version of it, called Multipath VGG19, which allows for extra local and global feature extraction (multi-level feature extraction) by making use of several processing paths. The extra features are fused via concatenation. The experiments verified the effectiveness of MVGG19 over the baseline VGG19. Specifically, top classification performance was achieved in five of the six image datasets, whilst the average classification improvement was 6.95%. MVGG19 also showed better overall stability and robustness to dataset variation, compared to other baseline state-of-the-art CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
11秒前
哈哈完成签到 ,获得积分10
12秒前
15秒前
17秒前
帝国之花应助科研通管家采纳,获得10
24秒前
24秒前
orixero应助科研通管家采纳,获得10
24秒前
25秒前
xxxgggppp发布了新的文献求助10
32秒前
34秒前
xx发布了新的文献求助10
40秒前
48秒前
YuxinChen完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
54秒前
ayun关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
ayun发布了新的文献求助10
1分钟前
1分钟前
1分钟前
SSY发布了新的文献求助10
1分钟前
tianya完成签到,获得积分10
1分钟前
852应助明亮剑采纳,获得10
1分钟前
忆修发布了新的文献求助10
1分钟前
闪闪的晓丝完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
齐家腾发布了新的文献求助30
2分钟前
susu发布了新的文献求助10
2分钟前
烂漫笑晴完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
帝国之花应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
小泉完成签到 ,获得积分10
2分钟前
诉与山风听完成签到,获得积分10
3分钟前
Willow完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772668
求助须知:如何正确求助?哪些是违规求助? 5600854
关于积分的说明 15429906
捐赠科研通 4905576
什么是DOI,文献DOI怎么找? 2639501
邀请新用户注册赠送积分活动 1587404
关于科研通互助平台的介绍 1542329