Industrial object and defect recognition utilizing multilevel feature extraction from industrial scenes with Deep Learning approach

计算机科学 人工智能 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 特征(语言学) 深度学习 对象(语法) 计算机视觉 萃取(化学) 化学 色谱法 语言学 哲学
作者
Ioannis D. Apostolopoulos,Mpesiana A. Tzani
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:14 (8): 10263-10276 被引量:29
标识
DOI:10.1007/s12652-021-03688-7
摘要

Modern industry requires modern solutions for monitoring the automatic production of goods and detecting defected materials. Smart monitoring of the functionality of the mechanical parts of technology systems or machines is a mandatory step towards automatic production. Deep Learning has proven its efficiency in feature extraction from images, videos and text, thereby succeeding in various object detection, recognition, segmentation and classification tasks. Despite its advances, little has been investigated about the effectiveness of specially designed Convolutional Neural Networks (CNNs) for defect detection and industrial object recognition. In the particular study, we employed six publicly available industrial-related image datasets, containing defected materials and industrial tools, or engine parts, aiming to develop a specialized model to classify them. Motivated by the success of the Virtual Geometry Group (VGG) network, we propose a modified version of it, called Multipath VGG19, which allows for extra local and global feature extraction (multi-level feature extraction) by making use of several processing paths. The extra features are fused via concatenation. The experiments verified the effectiveness of MVGG19 over the baseline VGG19. Specifically, top classification performance was achieved in five of the six image datasets, whilst the average classification improvement was 6.95%. MVGG19 also showed better overall stability and robustness to dataset variation, compared to other baseline state-of-the-art CNNs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助ZHEN采纳,获得10
刚刚
1秒前
cruise发布了新的文献求助10
1秒前
2秒前
sdfaef完成签到,获得积分10
2秒前
AUM123发布了新的文献求助10
3秒前
巴卡巴卡完成签到,获得积分10
3秒前
XXQ发布了新的文献求助10
3秒前
4秒前
林菲菲发布了新的文献求助10
5秒前
try发布了新的文献求助10
5秒前
宇宙队发布了新的文献求助10
5秒前
慧子发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
巴卡巴卡发布了新的文献求助10
6秒前
杜可欣发布了新的文献求助10
6秒前
6秒前
芳菲依旧应助紫熊采纳,获得10
6秒前
7秒前
fengfenghao完成签到,获得积分10
7秒前
赘婿应助zkyyy采纳,获得10
7秒前
BB88完成签到,获得积分10
8秒前
小蒋完成签到 ,获得积分10
8秒前
9秒前
9秒前
9秒前
英姑应助LLHHZZ采纳,获得10
9秒前
lishanner完成签到,获得积分10
9秒前
9秒前
Foalphaz发布了新的文献求助10
10秒前
sijietan发布了新的文献求助10
10秒前
10秒前
11秒前
甜甜的平文完成签到 ,获得积分10
11秒前
HXU完成签到,获得积分20
11秒前
11秒前
Yapi完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791