Industrial object and defect recognition utilizing multilevel feature extraction from industrial scenes with Deep Learning approach

计算机科学 人工智能 特征提取 视觉对象识别的认知神经科学 模式识别(心理学) 特征(语言学) 深度学习 对象(语法) 计算机视觉 萃取(化学) 化学 语言学 色谱法 哲学
作者
Ioannis D. Apostolopoulos,Mpesiana A. Tzani
出处
期刊:Journal of Ambient Intelligence and Humanized Computing [Springer Nature]
卷期号:14 (8): 10263-10276 被引量:29
标识
DOI:10.1007/s12652-021-03688-7
摘要

Modern industry requires modern solutions for monitoring the automatic production of goods and detecting defected materials. Smart monitoring of the functionality of the mechanical parts of technology systems or machines is a mandatory step towards automatic production. Deep Learning has proven its efficiency in feature extraction from images, videos and text, thereby succeeding in various object detection, recognition, segmentation and classification tasks. Despite its advances, little has been investigated about the effectiveness of specially designed Convolutional Neural Networks (CNNs) for defect detection and industrial object recognition. In the particular study, we employed six publicly available industrial-related image datasets, containing defected materials and industrial tools, or engine parts, aiming to develop a specialized model to classify them. Motivated by the success of the Virtual Geometry Group (VGG) network, we propose a modified version of it, called Multipath VGG19, which allows for extra local and global feature extraction (multi-level feature extraction) by making use of several processing paths. The extra features are fused via concatenation. The experiments verified the effectiveness of MVGG19 over the baseline VGG19. Specifically, top classification performance was achieved in five of the six image datasets, whilst the average classification improvement was 6.95%. MVGG19 also showed better overall stability and robustness to dataset variation, compared to other baseline state-of-the-art CNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助玲玲采纳,获得10
1秒前
1秒前
简单的期待应助顺利绿真采纳,获得10
1秒前
香蕉觅云应助好好吃饭采纳,获得10
1秒前
2秒前
mayday完成签到,获得积分10
2秒前
蓝色发布了新的文献求助10
3秒前
无花果应助陈同学采纳,获得10
3秒前
斯文败类应助优雅的白安采纳,获得10
4秒前
4秒前
学术趴菜发布了新的文献求助10
4秒前
乐乐应助小小采纳,获得50
4秒前
斯文败类应助taeyeon采纳,获得10
5秒前
劲秉应助专一的雅青采纳,获得10
5秒前
是是是发布了新的文献求助10
5秒前
端庄的墨镜完成签到,获得积分20
5秒前
5秒前
5秒前
花火完成签到,获得积分10
6秒前
xxxabcy发布了新的文献求助10
6秒前
CodeCraft应助孜火采纳,获得10
6秒前
7秒前
可靠数据线完成签到 ,获得积分10
7秒前
热情芝麻发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
小猴子发布了新的文献求助10
11秒前
11秒前
欢乐马完成签到,获得积分10
11秒前
11秒前
认真的寒香完成签到,获得积分10
12秒前
RUINNNO完成签到 ,获得积分10
12秒前
丘比特应助感动曼香采纳,获得10
13秒前
蓝色完成签到,获得积分10
13秒前
情怀应助Carol采纳,获得10
13秒前
852应助sunguoyi采纳,获得10
13秒前
可靠数据线关注了科研通微信公众号
16秒前
16秒前
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470559
求助须知:如何正确求助?哪些是违规求助? 3063526
关于积分的说明 9084066
捐赠科研通 2754015
什么是DOI,文献DOI怎么找? 1511182
邀请新用户注册赠送积分活动 698310
科研通“疑难数据库(出版商)”最低求助积分说明 698182