Association Between Preoperative Patient Factors and Clinically Meaningful Outcomes After Hip Arthroscopy for Femoroacetabular Impingement Syndrome: A Machine Learning Analysis

医学 最小临床重要差异 股骨髋臼撞击 髋关节镜检查 布里氏评分 接收机工作特性 物理疗法 学习曲线 关节镜检查 随机对照试验 外科 人工智能 内科学 计算机科学 操作系统
作者
Kyle N. Kunze,Evan M. Polce,Ian M. Clapp,Thomas D. Alter,Shane J. Nho
出处
期刊:American Journal of Sports Medicine [SAGE]
卷期号:50 (3): 746-756 被引量:31
标识
DOI:10.1177/03635465211067546
摘要

The International Hip Outcome Tool 12-Item Questionnaire (IHOT-12) has been proposed as a more appropriate outcome assessment for hip arthroscopy populations. The extent to which preoperative patient factors predict achieving clinically meaningful outcomes among patients undergoing hip arthroscopy for femoroacetabular impingement syndrome (FAIS) remains poorly understood.To determine the predictive relationship of preoperative imaging, patient-reported outcome measures, and patient demographics with achievement of the minimal clinically important difference (MCID), Patient Acceptable Symptom State (PASS), and substantial clinical benefit (SCB) for the IHOT-12 at a minimum of 2 years postoperatively.Case-control study; Level of evidence, 3.Data were analyzed for consecutive patients who underwent hip arthroscopy for FAIS between 2012 and 2018 and completed the IHOT-12 preoperatively and at a minimum of 2 years postoperatively. Fifteen novel machine learning algorithms were developed using 47 potential demographic, clinical, and radiographic predictors. Model performance was evaluated with discrimination, calibration, decision-curve analysis and the brier score.A total of 859 patients were identified, with 685 (79.7%) achieving the MCID, 535 (62.3%) achieving the PASS, and 498 (58.0%) achieving the SCB. For predicting the MCID, discrimination for the best-performing models ranged from fair to excellent (area under the curve [AUC], 0.69-0.89), although calibration was excellent (calibration intercept and slopes: -0.06 to 0.02 and 0.24 to 0.85, respectively). For predicting the PASS, discrimination for the best-performing models ranged from fair to excellent (AUC, 0.63-0.81), with excellent calibration (calibration intercept and slopes: 0.03-0.18 and 0.52-0.90, respectively). For predicting the SCB, discrimination for the best-performing models ranged from fair to good (AUC, 0.61-0.77), with excellent calibration (calibration intercept and slopes: -0.08 to 0.00 and 0.56 to 1.02, respectively). Thematic predictors for failing to achieve the MCID, PASS, and SCB were presence of back pain, anxiety/depression, chronic symptom duration, preoperative hip injections, and increasing body mass index (BMI). Specifically, thresholds associated with lower likelihood to achieve a clinically meaningful outcome were preoperative Hip Outcome Score-Activities of Daily Living <55, preoperative Hip Outcome Score-Sports Subscale >55.6, preoperative IHOT-12 score ≥48.5, preoperative modified Harris Hip Score ≤51.7, age >41 years, BMI ≥27, and preoperative α angle >76.6°.We developed novel machine learning algorithms that leveraged preoperative demographic, clinical, and imaging-based features to reliably predict clinically meaningful improvement after hip arthroscopy for FAIS. Despite consistent improvements after hip arthroscopy, meaningful improvements are negatively influenced by greater BMI, back pain, chronic symptom duration, preoperative mental health, and use of hip corticosteroid injections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
1秒前
咚咚发布了新的文献求助10
1秒前
打打应助nyzcc采纳,获得10
1秒前
1秒前
狡猾的菠萝完成签到 ,获得积分10
1秒前
传奇3应助摆烂昊采纳,获得10
2秒前
2秒前
一马当先霄完成签到,获得积分10
3秒前
3秒前
yq关注了科研通微信公众号
3秒前
墨酒发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
cuiyanjie发布了新的文献求助10
4秒前
科研通AI2S应助songyuan采纳,获得10
4秒前
冷冷子发布了新的文献求助10
4秒前
小小申发布了新的文献求助10
4秒前
cy完成签到 ,获得积分10
4秒前
我爱学习发布了新的文献求助10
5秒前
阿雅完成签到 ,获得积分10
5秒前
5秒前
琳毓完成签到,获得积分10
5秒前
hehe_198发布了新的文献求助10
5秒前
6秒前
小蘑菇应助欧皇陈书宝采纳,获得10
6秒前
英俊的铭应助鳄鱼叁叁采纳,获得10
6秒前
Zoki完成签到,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
6秒前
orixero应助科研通管家采纳,获得10
6秒前
李健应助nyzcc采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
7秒前
深情安青应助小胳膊细腿采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
情怀应助LNF采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152