AlphaFold2-aware protein–DNA binding site prediction using graph transformer

计算机科学 图形 变压器 马修斯相关系数 DNA结合位点 计算生物学 机器学习 人工智能 数据挖掘 理论计算机科学 生物 基因 遗传学 工程类 电压 基因表达 电气工程 发起人 支持向量机
作者
Qianmu Yuan,Sheng Chen,Jiahua Rao,Shuangjia Zheng,Huiying Zhao,Yuedong Yang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:43
标识
DOI:10.1093/bib/bbab564
摘要

Protein-DNA interactions play crucial roles in the biological systems, and identifying protein-DNA binding sites is the first step for mechanistic understanding of various biological activities (such as transcription and repair) and designing novel drugs. How to accurately identify DNA-binding residues from only protein sequence remains a challenging task. Currently, most existing sequence-based methods only consider contextual features of the sequential neighbors, which are limited to capture spatial information. Based on the recent breakthrough in protein structure prediction by AlphaFold2, we propose an accurate predictor, GraphSite, for identifying DNA-binding residues based on the structural models predicted by AlphaFold2. Here, we convert the binding site prediction problem into a graph node classification task and employ a transformer-based variant model to take the protein structural information into account. By leveraging predicted protein structures and graph transformer, GraphSite substantially improves over the latest sequence-based and structure-based methods. The algorithm is further confirmed on the independent test set of 181 proteins, where GraphSite surpasses the state-of-the-art structure-based method by 16.4% in area under the precision-recall curve and 11.2% in Matthews correlation coefficient, respectively. We provide the datasets, the predicted structures and the source codes along with the pre-trained models of GraphSite at https://github.com/biomed-AI/GraphSite. The GraphSite web server is freely available at https://biomed.nscc-gz.cn/apps/GraphSite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助小王采纳,获得10
刚刚
彭于晏应助乔乔采纳,获得10
刚刚
刚刚
1199完成签到,获得积分10
刚刚
刚刚
南瓜完成签到 ,获得积分10
1秒前
eric曾完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
韦威风完成签到,获得积分10
4秒前
请叫我风吹麦浪应助cc采纳,获得30
4秒前
所所应助Ll采纳,获得10
4秒前
阳光的道消完成签到,获得积分10
5秒前
5秒前
5秒前
豌豆射手完成签到,获得积分10
6秒前
6秒前
桑桑发布了新的文献求助10
6秒前
领导范儿应助幸福胡萝卜采纳,获得10
7秒前
明理的小甜瓜完成签到,获得积分10
8秒前
8秒前
33333完成签到,获得积分20
8秒前
8秒前
8秒前
756发布了新的文献求助10
8秒前
9秒前
科研通AI5应助GHOST采纳,获得10
9秒前
9秒前
罗实完成签到,获得积分10
10秒前
科研通AI2S应助k7采纳,获得10
10秒前
10秒前
粱自中完成签到,获得积分10
10秒前
luca发布了新的文献求助30
10秒前
10秒前
11秒前
唉呦嘿完成签到,获得积分10
11秒前
dan1029发布了新的文献求助10
12秒前
mc完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762