细胞外基质
化学
细胞生物学
透明质酸
基因沉默
基因传递
分解代谢
生物化学
新陈代谢
转染
生物
解剖
基因
作者
Hongze Chang,Feng Cai,Qian Zhang,Mingwei Jiang,Xiaolong Yang,Jin Qi,Lei Wang,Lianfu Deng,Wenguo Cui,Xiaodong Liu
标识
DOI:10.1002/smtd.202101201
摘要
Extracellular matrix (ECM) metabolism balance is essential for maintaining tissue structure and function. However, the complex crosstalk between the ECM, resident cellular, and tissue microenvironment makes long-term maintenance of ECM metabolism balance in an abnormal microenvironment difficult to achieve. Herein, an injectable circRNA silencing-hydrogel microsphere (psh-circSTC2-lipo@MS) is constructed by grafting circSTC2 silencing genes-loaded 1,2-dioleoyl-3-trimethylammonium-propane/cholesterol/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOTAP/Chol/DOPE) cationic liposomes on methacrylated hyaluronic acid (HAMA) microspheres via amide bonds, which could silence pathological genes in nucleus pulposus (NP) cells to regulate ECM metabolism balance in the nutrient-restricted microenvironment, thereby inhibiting intervertebral disc (IVD) degeneration. HAMA microspheres prepared by microfluidics displayed good degradability, swellability, and injectability. And lipoplexes can be efficiently loaded and released for 27 d through chemical grafting. Cocultured under nutrient-restricted conditions for 72 h, psh-circSTC2-lipo@MS significantly promotes the synthesis of ECM-related proteins and inhibits the secretion of ECM catabolism-related proteases in NP cells. In the rat IVD nutrient-restricted model, local injection of psh-circSTC2-lipo@MS promotes ECM synthesis and restored NP tissue after 8 weeks. In summary, this study confirms that psh-circSTC2-lipo@MS as a safe and controllable targeted gene delivery system has great potential in regulating the ECM metabolism balance under an abnormal microenvironment.
科研通智能强力驱动
Strongly Powered by AbleSci AI