Citrulline-induced mesoporous CoS/CoO heterojunction nanorods triggering high-efficiency oxygen electrocatalysis in solid-state Zn-air batteries

双功能 材料科学 纳米棒 电催化剂 化学工程 介孔材料 析氧 氧气 催化作用 化学 纳米技术 过电位 电化学 电极 物理化学 有机化学 工程类
作者
Yue Wang,Xiaodong Wu,Xian Jiang,Xiangrui Wu,Yawen Tang,Dongmei Sun,Gengtao Fu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:434: 134744-134744 被引量:81
标识
DOI:10.1016/j.cej.2022.134744
摘要

Interface engineering is recognized as one of the effective strategies to optimize the electrocatalytic behavior of catalysts via triggering surface reconstruction and charge redistribution. However, the deliberate control over rich-phase boundaries in a simple and effective manner is still challenging. Herein, an effective bifunctional oxygen electrocatalyst of mesoporous CoS/CoO heterojunction nanorods (CoS/CoO PNRs) is constructed through two-step topological transformations of Co(CO3)0.5OH·0.11H2O nanorods induced by unique citrulline molecule. The designed CoS/CoO PNRs present multiple advantages of mesoporous rod-like architecture, abundant heterointerfaces, increased oxygen vacancies, as well as dual-phase synergy, which trigger outstanding electrocatalytic performance towards oxygen evolution reaction (OER) with low overpotential (265 mV at 10 mA cm−2), low activation energy (Ea = 36.14 kJ mol−1) and robust long-term stability. The CoS/CoO PNRs is also demonstrated to be highly active for the oxygen reduction reaction (ORR) with a positive half-wave potential (0.84 V), making the CoS/CoO PNRs a potential bifunctional oxygen catalyst. As an air-cathode, the CoS/CoO PNRs can enable the solid-state Zn-air battery to achieve a large power density, a fast dynamic response, and long cycle life, outperforming that assembled with commercial Pt/C + RuO2. Theoretical calculations finally unveil that the interfacial electron transfer from CoS to CoO modulates the electronic structure of CoS/CoO, and subsequently adjusts the binding strength of the intermediates in the OER and ORR. This work opens up a new design strategy for the synthesis of high-efficiency oxygen electrocatalysts to be applied in energy-related electrochemical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迟暮发布了新的文献求助10
1秒前
yi发布了新的文献求助10
2秒前
Triumph完成签到,获得积分10
3秒前
黎咩e茹完成签到,获得积分10
3秒前
5秒前
5秒前
TingtingGZ发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
不二发布了新的文献求助10
10秒前
11秒前
青山见秋完成签到,获得积分10
11秒前
11秒前
ZJH完成签到,获得积分10
12秒前
治神守气完成签到,获得积分10
13秒前
13秒前
sujingbo发布了新的文献求助10
13秒前
14秒前
Ww完成签到 ,获得积分10
14秒前
15秒前
周涨杰发布了新的文献求助10
15秒前
ymjssg应助lizhiyuan采纳,获得10
16秒前
ZJH发布了新的文献求助10
16秒前
Hello应助三岁采纳,获得10
18秒前
18秒前
治神守气发布了新的文献求助10
19秒前
苦艾发布了新的文献求助10
19秒前
华仔应助怎么办采纳,获得10
19秒前
心情完成签到 ,获得积分10
21秒前
上官若男应助青山见秋采纳,获得10
21秒前
浮游应助啾v咪采纳,获得10
23秒前
iL发布了新的文献求助10
23秒前
23秒前
lizhiyuan完成签到,获得积分20
24秒前
25秒前
雪松完成签到 ,获得积分10
25秒前
汐风发布了新的文献求助10
26秒前
深情牛排完成签到 ,获得积分10
26秒前
傲娇的汉堡完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457832
求助须知:如何正确求助?哪些是违规求助? 4564070
关于积分的说明 14293379
捐赠科研通 4488847
什么是DOI,文献DOI怎么找? 2458760
邀请新用户注册赠送积分活动 1448671
关于科研通互助平台的介绍 1424355