Citrulline-induced mesoporous CoS/CoO heterojunction nanorods triggering high-efficiency oxygen electrocatalysis in solid-state Zn-air batteries

双功能 材料科学 纳米棒 电催化剂 化学工程 介孔材料 析氧 氧气 催化作用 化学 纳米技术 过电位 电化学 电极 物理化学 有机化学 工程类
作者
Yue Wang,Xiaodong Wu,Xian Jiang,Xiangrui Wu,Yawen Tang,Dongmei Sun,Gengtao Fu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:434: 134744-134744 被引量:81
标识
DOI:10.1016/j.cej.2022.134744
摘要

Interface engineering is recognized as one of the effective strategies to optimize the electrocatalytic behavior of catalysts via triggering surface reconstruction and charge redistribution. However, the deliberate control over rich-phase boundaries in a simple and effective manner is still challenging. Herein, an effective bifunctional oxygen electrocatalyst of mesoporous CoS/CoO heterojunction nanorods (CoS/CoO PNRs) is constructed through two-step topological transformations of Co(CO3)0.5OH·0.11H2O nanorods induced by unique citrulline molecule. The designed CoS/CoO PNRs present multiple advantages of mesoporous rod-like architecture, abundant heterointerfaces, increased oxygen vacancies, as well as dual-phase synergy, which trigger outstanding electrocatalytic performance towards oxygen evolution reaction (OER) with low overpotential (265 mV at 10 mA cm−2), low activation energy (Ea = 36.14 kJ mol−1) and robust long-term stability. The CoS/CoO PNRs is also demonstrated to be highly active for the oxygen reduction reaction (ORR) with a positive half-wave potential (0.84 V), making the CoS/CoO PNRs a potential bifunctional oxygen catalyst. As an air-cathode, the CoS/CoO PNRs can enable the solid-state Zn-air battery to achieve a large power density, a fast dynamic response, and long cycle life, outperforming that assembled with commercial Pt/C + RuO2. Theoretical calculations finally unveil that the interfacial electron transfer from CoS to CoO modulates the electronic structure of CoS/CoO, and subsequently adjusts the binding strength of the intermediates in the OER and ORR. This work opens up a new design strategy for the synthesis of high-efficiency oxygen electrocatalysts to be applied in energy-related electrochemical devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温尔应助tianmafei采纳,获得10
刚刚
小蜗牛完成签到,获得积分10
刚刚
1秒前
天真的涵易关注了科研通微信公众号
1秒前
菠萝冰棒发布了新的文献求助10
1秒前
hsy完成签到,获得积分10
1秒前
舒服的初蓝完成签到,获得积分10
2秒前
共享精神应助生产队的LV采纳,获得10
2秒前
kk完成签到 ,获得积分10
3秒前
BayMax完成签到,获得积分10
3秒前
太叔明辉完成签到,获得积分10
3秒前
鲁松发布了新的文献求助80
3秒前
等待的忻完成签到,获得积分10
3秒前
4秒前
Nuyoah发布了新的文献求助10
4秒前
欣喜落雁完成签到,获得积分10
4秒前
伶俐剑心发布了新的文献求助30
4秒前
ws发布了新的文献求助10
4秒前
4秒前
CipherSage应助内向以彤采纳,获得10
4秒前
瑞少完成签到,获得积分10
5秒前
5秒前
外向孤容完成签到,获得积分20
5秒前
5秒前
晴天完成签到,获得积分10
6秒前
烂漫的从彤完成签到,获得积分10
6秒前
6秒前
大模型应助coisini12采纳,获得10
6秒前
111完成签到,获得积分10
7秒前
JamesPei应助Lay采纳,获得10
7秒前
CodeCraft应助一般的采纳,获得10
7秒前
lee完成签到 ,获得积分10
7秒前
Li完成签到,获得积分10
7秒前
8秒前
雨田发布了新的文献求助10
9秒前
来篇nature完成签到,获得积分10
9秒前
9秒前
9秒前
包容友儿完成签到,获得积分10
9秒前
菠萝冰棒完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483071
求助须知:如何正确求助?哪些是违规求助? 4583840
关于积分的说明 14392895
捐赠科研通 4513440
什么是DOI,文献DOI怎么找? 2473476
邀请新用户注册赠送积分活动 1459525
关于科研通互助平台的介绍 1433024