MiRNA–disease association prediction based on meta-paths

小RNA 计算机科学 特征(语言学) 疾病 节点(物理) 路径(计算) 特征向量 计算生物学 基因 人工智能 医学 生物 病理 遗传学 工程类 哲学 程序设计语言 结构工程 语言学
作者
Liang Yu,Yujia Zheng,Lin Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:18
标识
DOI:10.1093/bib/bbab571
摘要

Since miRNAs can participate in the posttranscriptional regulation of gene expression, they may provide ideas for the development of new drugs or become new biomarkers for drug targets or disease diagnosis. In this work, we propose an miRNA-disease association prediction method based on meta-paths (MDPBMP). First, an miRNA-disease-gene heterogeneous information network was constructed, and seven symmetrical meta-paths were defined according to different semantics. After constructing the initial feature vector for the node, the vector information carried by all nodes on the meta-path instance is extracted and aggregated to update the feature vector of the starting node. Then, the vector information obtained by the nodes on different meta-paths is aggregated. Finally, miRNA and disease embedding feature vectors are used to calculate their associated scores. Compared with the other methods, MDPBMP obtained the highest AUC value of 0.9214. Among the top 50 predicted miRNAs for lung neoplasms, esophageal neoplasms, colon neoplasms and breast neoplasms, 49, 48, 49 and 50 have been verified. Furthermore, for breast neoplasms, we deleted all the known associations between breast neoplasms and miRNAs from the training set. These results also show that for new diseases without known related miRNA information, our model can predict their potential miRNAs. Code and data are available at https://github.com/LiangYu-Xidian/MDPBMP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rose_Yang完成签到 ,获得积分10
刚刚
AAA房地产小王完成签到,获得积分10
1秒前
vic303发布了新的文献求助10
3秒前
和路雪完成签到,获得积分10
3秒前
大个应助过儿采纳,获得10
4秒前
4秒前
6秒前
6秒前
xxcc12356完成签到,获得积分10
7秒前
完美背包完成签到,获得积分10
8秒前
9秒前
9秒前
云翰完成签到,获得积分10
9秒前
感动的红酒完成签到,获得积分10
10秒前
东郭一斩发布了新的文献求助10
11秒前
顾矜应助科研狗-加班族采纳,获得10
11秒前
张旭卓发布了新的文献求助10
11秒前
14秒前
慕青应助AAA房地产小王采纳,获得10
14秒前
闪闪发布了新的文献求助20
19秒前
张旭卓完成签到,获得积分10
22秒前
无花果应助闪闪跳跳糖采纳,获得10
22秒前
22秒前
23秒前
小谢同学完成签到 ,获得积分10
23秒前
一只小猪包完成签到,获得积分10
24秒前
27秒前
xxcc12356发布了新的文献求助10
29秒前
孙燕应助科研通管家采纳,获得10
31秒前
打打应助科研通管家采纳,获得10
31秒前
31秒前
人生如梦应助科研通管家采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
orixero应助科研通管家采纳,获得10
31秒前
隐形曼青应助科研通管家采纳,获得10
31秒前
Theprisoners应助科研通管家采纳,获得20
31秒前
Lucas应助科研通管家采纳,获得10
31秒前
31秒前
吴彦祖完成签到,获得积分10
32秒前
脑洞疼应助particularc采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999444
求助须知:如何正确求助?哪些是违规求助? 3538780
关于积分的说明 11275184
捐赠科研通 3277604
什么是DOI,文献DOI怎么找? 1807633
邀请新用户注册赠送积分活动 883977
科研通“疑难数据库(出版商)”最低求助积分说明 810111