MiRNA–disease association prediction based on meta-paths

小RNA 计算机科学 特征(语言学) 疾病 节点(物理) 路径(计算) 特征向量 计算生物学 基因 人工智能 医学 生物 病理 遗传学 工程类 哲学 程序设计语言 结构工程 语言学
作者
Liang Yu,Yujia Zheng,Lin Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (2) 被引量:18
标识
DOI:10.1093/bib/bbab571
摘要

Since miRNAs can participate in the posttranscriptional regulation of gene expression, they may provide ideas for the development of new drugs or become new biomarkers for drug targets or disease diagnosis. In this work, we propose an miRNA-disease association prediction method based on meta-paths (MDPBMP). First, an miRNA-disease-gene heterogeneous information network was constructed, and seven symmetrical meta-paths were defined according to different semantics. After constructing the initial feature vector for the node, the vector information carried by all nodes on the meta-path instance is extracted and aggregated to update the feature vector of the starting node. Then, the vector information obtained by the nodes on different meta-paths is aggregated. Finally, miRNA and disease embedding feature vectors are used to calculate their associated scores. Compared with the other methods, MDPBMP obtained the highest AUC value of 0.9214. Among the top 50 predicted miRNAs for lung neoplasms, esophageal neoplasms, colon neoplasms and breast neoplasms, 49, 48, 49 and 50 have been verified. Furthermore, for breast neoplasms, we deleted all the known associations between breast neoplasms and miRNAs from the training set. These results also show that for new diseases without known related miRNA information, our model can predict their potential miRNAs. Code and data are available at https://github.com/LiangYu-Xidian/MDPBMP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
哈嘿哈嘿哒完成签到,获得积分10
1秒前
1秒前
Kobe227发布了新的文献求助20
1秒前
2秒前
Akim应助LW采纳,获得10
3秒前
虚幻青曼发布了新的文献求助10
3秒前
多喝水发布了新的文献求助20
3秒前
研友_VZG7GZ应助Tu采纳,获得10
4秒前
充电宝应助高贵的斑马采纳,获得10
4秒前
zkk完成签到,获得积分10
5秒前
Whisper完成签到,获得积分10
5秒前
迷路诗蕊完成签到,获得积分10
5秒前
星辰大海应助ang采纳,获得10
5秒前
吴巷玉完成签到,获得积分10
6秒前
morena发布了新的文献求助10
6秒前
余22发布了新的文献求助10
6秒前
6秒前
xingfangshu完成签到,获得积分10
6秒前
7秒前
万能图书馆应助kunxiao采纳,获得10
7秒前
9秒前
无限延恶完成签到,获得积分20
9秒前
汉堡包应助会撒娇的靖仇采纳,获得10
9秒前
赘婿应助rita采纳,获得10
9秒前
Weiyu完成签到 ,获得积分10
10秒前
思源应助单薄凝冬采纳,获得10
10秒前
SSR完成签到 ,获得积分10
10秒前
11秒前
Oooner发布了新的文献求助10
11秒前
yfy完成签到,获得积分10
11秒前
12秒前
Jiayi发布了新的文献求助10
12秒前
李健应助友好的大米采纳,获得10
13秒前
WWW完成签到,获得积分10
14秒前
茉莉完成签到,获得积分10
14秒前
学术裁缝应助li采纳,获得10
15秒前
和和和完成签到,获得积分10
15秒前
15秒前
YUN完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500