Robust Medical Image Classification from Noisy Labeled Data with Global and Local Representation Guided Co-training

计算机科学 人工智能 模式识别(心理学) 噪音(视频) 机器学习 分类器(UML) 稳健性(进化) 人工神经网络 深度学习 注释 图像自动标注 数据挖掘
作者
Cheng Xue,Lequan Yu,Pengfei Chen,Qi Dou,Pheng-Ann Heng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2021.3140140
摘要

Deep neural networks have achieved remarkable success in a wide variety of natural image and medical image computing tasks. However, these achievements indispensably rely on accurately annotated training data. If encountering some noisy-labeled images, the network training procedure would suffer from difficulties, leading to a sub-optimal classifier. This problem is even more severe in the medical image analysis field, as the annotation quality of medical images heavily relies on the expertise and experience of annotators. In this paper, we propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification from noisy-labeled data to combat the lack of high quality annotated medical data. Specifically, we employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples. Then, the clean samples are trained by a collaborative training strategy to eliminate the disturbance from imperfect labeled samples. Notably, we further design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples in a self-supervised manner. We evaluated our proposed robust learning strategy on four public medical image classification datasets with three types of label noise, i.e., random noise, computer-generated label noise, and inter-observer variability noise. Our method outperforms other learning from noisy label methods and we also conducted extensive experiments to analyze each component of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu123456完成签到,获得积分10
1秒前
徐蹇发布了新的文献求助10
1秒前
自信小笼包完成签到,获得积分10
1秒前
wddddd发布了新的文献求助10
2秒前
2秒前
yin发布了新的文献求助10
2秒前
2秒前
陶征应助咕噜采纳,获得20
2秒前
hh完成签到,获得积分10
3秒前
3秒前
传奇3应助xl1990采纳,获得10
4秒前
4秒前
柳crystal发布了新的文献求助10
5秒前
科目三应助傅全有采纳,获得10
5秒前
无聊的哈密瓜完成签到,获得积分10
5秒前
niuzai完成签到,获得积分10
6秒前
6秒前
6秒前
徐蹇完成签到,获得积分10
6秒前
7秒前
深情安青应助草莓熊采纳,获得20
7秒前
7秒前
8秒前
ccccccp发布了新的文献求助10
8秒前
深情安青应助Han采纳,获得10
8秒前
香菜大王完成签到 ,获得积分10
9秒前
battle完成签到 ,获得积分10
9秒前
9秒前
星辰大海应助veblem采纳,获得10
9秒前
9秒前
10秒前
wwz完成签到 ,获得积分10
10秒前
Fu关注了科研通微信公众号
10秒前
李爱国应助开朗万天采纳,获得10
10秒前
11秒前
甘蔗侠发布了新的文献求助10
12秒前
13秒前
13秒前
13秒前
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979332
求助须知:如何正确求助?哪些是违规求助? 3523278
关于积分的说明 11216934
捐赠科研通 3260722
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878862
科研通“疑难数据库(出版商)”最低求助积分说明 807113