Robust Medical Image Classification from Noisy Labeled Data with Global and Local Representation Guided Co-training

计算机科学 人工智能 模式识别(心理学) 噪音(视频) 机器学习 分类器(UML) 稳健性(进化) 人工神经网络 深度学习 注释 图像自动标注 数据挖掘
作者
Cheng Xue,Lequan Yu,Pengfei Chen,Qi Dou,Pheng-Ann Heng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2021.3140140
摘要

Deep neural networks have achieved remarkable success in a wide variety of natural image and medical image computing tasks. However, these achievements indispensably rely on accurately annotated training data. If encountering some noisy-labeled images, the network training procedure would suffer from difficulties, leading to a sub-optimal classifier. This problem is even more severe in the medical image analysis field, as the annotation quality of medical images heavily relies on the expertise and experience of annotators. In this paper, we propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification from noisy-labeled data to combat the lack of high quality annotated medical data. Specifically, we employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples. Then, the clean samples are trained by a collaborative training strategy to eliminate the disturbance from imperfect labeled samples. Notably, we further design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples in a self-supervised manner. We evaluated our proposed robust learning strategy on four public medical image classification datasets with three types of label noise, i.e., random noise, computer-generated label noise, and inter-observer variability noise. Our method outperforms other learning from noisy label methods and we also conducted extensive experiments to analyze each component of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张杰发布了新的文献求助10
刚刚
李凤凤发布了新的文献求助10
1秒前
温暖翠丝关注了科研通微信公众号
1秒前
2秒前
2秒前
3秒前
3秒前
斯文败类应助积极的未来采纳,获得10
3秒前
4秒前
王同学发布了新的文献求助10
4秒前
4秒前
蔚111发布了新的文献求助10
5秒前
5秒前
阿特拉斯耸耸肩完成签到,获得积分10
5秒前
wanwan完成签到,获得积分10
6秒前
6秒前
zpf应助serendipity采纳,获得10
7秒前
CanLiu完成签到,获得积分10
7秒前
7秒前
sensensmart发布了新的文献求助10
7秒前
7秒前
Lucas应助lydz采纳,获得10
8秒前
党旭龙完成签到,获得积分20
8秒前
江辰戏发布了新的文献求助10
8秒前
畅快的友卉完成签到,获得积分10
8秒前
丘比特应助gcy采纳,获得10
9秒前
pengnanhao发布了新的文献求助10
10秒前
锥锥发布了新的文献求助10
11秒前
11秒前
小马甲应助哈哈采纳,获得10
12秒前
东方完成签到,获得积分20
13秒前
热情的夏完成签到,获得积分10
14秒前
15秒前
东方发布了新的文献求助10
16秒前
胡德生发布了新的文献求助10
17秒前
江辰戏完成签到,获得积分20
17秒前
17秒前
18秒前
春二虫关注了科研通微信公众号
18秒前
19秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Sustainability in ’Tides Chemistry 1500
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Photosynthesis III 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3071459
求助须知:如何正确求助?哪些是违规求助? 2725490
关于积分的说明 7489720
捐赠科研通 2372698
什么是DOI,文献DOI怎么找? 1258199
科研通“疑难数据库(出版商)”最低求助积分说明 610233
版权声明 596916