Robust Medical Image Classification from Noisy Labeled Data with Global and Local Representation Guided Co-training

计算机科学 人工智能 模式识别(心理学) 噪音(视频) 机器学习 分类器(UML) 稳健性(进化) 人工神经网络 深度学习 注释 图像自动标注 数据挖掘
作者
Cheng Xue,Lequan Yu,Pengfei Chen,Qi Dou,Pheng-Ann Heng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2021.3140140
摘要

Deep neural networks have achieved remarkable success in a wide variety of natural image and medical image computing tasks. However, these achievements indispensably rely on accurately annotated training data. If encountering some noisy-labeled images, the network training procedure would suffer from difficulties, leading to a sub-optimal classifier. This problem is even more severe in the medical image analysis field, as the annotation quality of medical images heavily relies on the expertise and experience of annotators. In this paper, we propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification from noisy-labeled data to combat the lack of high quality annotated medical data. Specifically, we employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples. Then, the clean samples are trained by a collaborative training strategy to eliminate the disturbance from imperfect labeled samples. Notably, we further design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples in a self-supervised manner. We evaluated our proposed robust learning strategy on four public medical image classification datasets with three types of label noise, i.e., random noise, computer-generated label noise, and inter-observer variability noise. Our method outperforms other learning from noisy label methods and we also conducted extensive experiments to analyze each component of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ye发布了新的文献求助10
刚刚
刚刚
Micky发布了新的文献求助10
1秒前
ruxing完成签到,获得积分10
1秒前
影像大侠完成签到,获得积分10
1秒前
852应助HYG采纳,获得30
2秒前
麦麦完成签到,获得积分10
2秒前
田様应助Isabel采纳,获得10
2秒前
gezid完成签到 ,获得积分10
2秒前
3秒前
3秒前
niu1发布了新的文献求助10
3秒前
Intro发布了新的文献求助10
3秒前
舒服的冬天完成签到,获得积分10
4秒前
Helical给Helical的求助进行了留言
4秒前
甜蜜晓绿完成签到,获得积分10
4秒前
5秒前
钱多多完成签到,获得积分10
5秒前
baekhyun完成签到,获得积分20
5秒前
5秒前
dpp发布了新的文献求助10
5秒前
今今完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
打打应助无情的白桃采纳,获得10
7秒前
香蕉觅云应助与光同晨采纳,获得10
8秒前
8秒前
小蘑菇应助clm采纳,获得10
8秒前
yhnsag完成签到,获得积分10
8秒前
Lin完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
Rain发布了新的文献求助10
10秒前
butiflow完成签到,获得积分10
10秒前
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762