Robust Medical Image Classification from Noisy Labeled Data with Global and Local Representation Guided Co-training

计算机科学 人工智能 模式识别(心理学) 噪音(视频) 机器学习 分类器(UML) 稳健性(进化) 人工神经网络 深度学习 注释 图像自动标注 数据挖掘
作者
Cheng Xue,Lequan Yu,Pengfei Chen,Qi Dou,Pheng-Ann Heng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2021.3140140
摘要

Deep neural networks have achieved remarkable success in a wide variety of natural image and medical image computing tasks. However, these achievements indispensably rely on accurately annotated training data. If encountering some noisy-labeled images, the network training procedure would suffer from difficulties, leading to a sub-optimal classifier. This problem is even more severe in the medical image analysis field, as the annotation quality of medical images heavily relies on the expertise and experience of annotators. In this paper, we propose a novel collaborative training paradigm with global and local representation learning for robust medical image classification from noisy-labeled data to combat the lack of high quality annotated medical data. Specifically, we employ the self-ensemble model with a noisy label filter to efficiently select the clean and noisy samples. Then, the clean samples are trained by a collaborative training strategy to eliminate the disturbance from imperfect labeled samples. Notably, we further design a novel global and local representation learning scheme to implicitly regularize the networks to utilize noisy samples in a self-supervised manner. We evaluated our proposed robust learning strategy on four public medical image classification datasets with three types of label noise, i.e., random noise, computer-generated label noise, and inter-observer variability noise. Our method outperforms other learning from noisy label methods and we also conducted extensive experiments to analyze each component of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
优美紫槐发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
因几完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助30
2秒前
2秒前
3秒前
深情安青应助manjusaka采纳,获得10
3秒前
4秒前
隐形曼青应助MANI采纳,获得10
4秒前
咸鱼发布了新的文献求助10
4秒前
5秒前
fy发布了新的文献求助10
5秒前
5秒前
缓慢的含海完成签到,获得积分10
6秒前
7秒前
采蘑菇发布了新的文献求助10
7秒前
7秒前
优美紫槐发布了新的文献求助10
7秒前
南风未起发布了新的文献求助10
8秒前
迷路荷花发布了新的文献求助10
8秒前
8秒前
8秒前
123完成签到,获得积分10
9秒前
9秒前
ayuelei发布了新的文献求助10
10秒前
聪明书蝶完成签到 ,获得积分10
10秒前
刻苦羽毛完成签到 ,获得积分10
11秒前
11秒前
13秒前
13秒前
13秒前
cruise发布了新的文献求助10
13秒前
longer发布了新的文献求助10
13秒前
科研小猪发布了新的文献求助10
13秒前
manjusaka发布了新的文献求助10
14秒前
顺颂时祺完成签到 ,获得积分10
15秒前
xin发布了新的文献求助10
15秒前
s316完成签到,获得积分10
16秒前
我是老大应助YYYYYY采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5720401
求助须知:如何正确求助?哪些是违规求助? 5260360
关于积分的说明 15291295
捐赠科研通 4869876
什么是DOI,文献DOI怎么找? 2615073
邀请新用户注册赠送积分活动 1565066
关于科研通互助平台的介绍 1522172