Identification of critical parameters influencing resistance performance of amphibious vehicles based on a SM-SA method

替代模型 主成分分析 参数统计 修剪 灵敏度(控制系统) 人工神经网络 工程类 非线性系统 控制理论(社会学) 还原(数学) 数学 数学优化 计算机科学 结构工程 人工智能 统计 量子力学 电子工程 物理 几何学 控制(管理)
作者
Zunfeng Du,Xuliang Mu,Haiming Zhu,Muxuan Han
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:258: 111770-111770 被引量:11
标识
DOI:10.1016/j.oceaneng.2022.111770
摘要

The design of high-speed amphibious vehicles needs to consider more factors compared to ships. The efficiency of design and optimization of parameters will not be realized in the absence of a feasible parametric model and design criterion. This paper provided a recognition method for the critical factors that significantly affect amphibious vehicles' resistance. Firstly, an initial parametric model of amphibious vehicles was established, and the resistance coefficients were acquired through numerical simulations. The principal component variables of initial data were extracted by principal component analysis (PCA). Then the functional relations between resistance and principal component variables were obtained respectively through artificial neural network (ANN) and nonlinear polynomial fitting (NPF). Next, two surrogate models were employed to analyze the sensitivity of the resistance to initial parameters. The identified sensitive parameters include the trim angle, loss of waterplane area, and some principal dimensions coefficients. The variation of parameters' sensitivity and their interactions were recognized when parameters are located in different regions. Ultimately, the resistance surrogate model was constructed with critical parameters, enabling the rapid optimization of parameter scheme. Compared with the initial scheme, the optimized scheme achieved significantly reduction of resistance. The extraction and optimization method for critical parameters in this paper provides reference for the design of amphibious vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怎么会这样呢完成签到,获得积分20
1秒前
GehaoZhang发布了新的文献求助10
1秒前
张馨月发布了新的文献求助10
1秒前
1秒前
1秒前
正直海之发布了新的文献求助10
2秒前
赖道之发布了新的文献求助10
2秒前
4秒前
科研通AI6应助zoey采纳,获得10
4秒前
5秒前
JJ完成签到,获得积分20
6秒前
林读书发布了新的文献求助10
6秒前
z落水无痕发布了新的文献求助10
7秒前
orixero应助跳跃的静曼采纳,获得10
7秒前
白菜小狗发布了新的文献求助10
7秒前
余鱼发布了新的文献求助10
7秒前
9秒前
读书高完成签到,获得积分10
10秒前
北侨发布了新的文献求助10
10秒前
GehaoZhang完成签到,获得积分10
11秒前
11秒前
12秒前
现代傲芙发布了新的文献求助30
12秒前
12秒前
上官若男应助JJ采纳,获得10
13秒前
14秒前
Dvus发布了新的文献求助30
14秒前
14秒前
科研通AI5应助duhdhd采纳,获得30
15秒前
16秒前
ZME完成签到,获得积分10
16秒前
16秒前
青羽发布了新的文献求助20
17秒前
正直海之完成签到,获得积分10
17秒前
2thered发布了新的文献求助10
17秒前
18秒前
ossantu发布了新的文献求助10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5083211
求助须知:如何正确求助?哪些是违规求助? 4300362
关于积分的说明 13399065
捐赠科研通 4124471
什么是DOI,文献DOI怎么找? 2258859
邀请新用户注册赠送积分活动 1263116
关于科研通互助平台的介绍 1197164