Identification of critical parameters influencing resistance performance of amphibious vehicles based on a SM-SA method

替代模型 主成分分析 参数统计 修剪 灵敏度(控制系统) 人工神经网络 工程类 非线性系统 控制理论(社会学) 还原(数学) 数学 数学优化 计算机科学 结构工程 人工智能 统计 物理 几何学 控制(管理) 量子力学 电子工程
作者
Zheng Du,Xuliang Mu,Haiming Zhu,Muxuan Han
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:258: 111770-111770 被引量:9
标识
DOI:10.1016/j.oceaneng.2022.111770
摘要

The design of high-speed amphibious vehicles needs to consider more factors compared to ships. The efficiency of design and optimization of parameters will not be realized in the absence of a feasible parametric model and design criterion. This paper provided a recognition method for the critical factors that significantly affect amphibious vehicles' resistance. Firstly, an initial parametric model of amphibious vehicles was established, and the resistance coefficients were acquired through numerical simulations. The principal component variables of initial data were extracted by principal component analysis (PCA). Then the functional relations between resistance and principal component variables were obtained respectively through artificial neural network (ANN) and nonlinear polynomial fitting (NPF). Next, two surrogate models were employed to analyze the sensitivity of the resistance to initial parameters. The identified sensitive parameters include the trim angle, loss of waterplane area, and some principal dimensions coefficients. The variation of parameters' sensitivity and their interactions were recognized when parameters are located in different regions. Ultimately, the resistance surrogate model was constructed with critical parameters, enabling the rapid optimization of parameter scheme. Compared with the initial scheme, the optimized scheme achieved significantly reduction of resistance. The extraction and optimization method for critical parameters in this paper provides reference for the design of amphibious vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NL14D发布了新的文献求助10
1秒前
情怀应助zzh采纳,获得10
1秒前
yuyu发布了新的文献求助10
1秒前
4秒前
5秒前
逢春完成签到,获得积分10
6秒前
dypdyp应助Jimmy Ko采纳,获得10
6秒前
8秒前
皓月星辰发布了新的文献求助10
8秒前
CodeCraft应助痴情的寒云采纳,获得10
9秒前
地表飞猪应助mmyhn采纳,获得10
9秒前
10秒前
seven完成签到,获得积分20
11秒前
木白发布了新的文献求助50
11秒前
华仔应助孙闹闹采纳,获得10
12秒前
大个应助吴小台呀采纳,获得10
12秒前
12秒前
闹闹完成签到,获得积分10
14秒前
猹尔斯完成签到,获得积分10
14秒前
小园饼干完成签到,获得积分10
14秒前
14秒前
狄孱发布了新的文献求助10
16秒前
yangyong发布了新的文献求助10
16秒前
16秒前
hhh发布了新的文献求助10
17秒前
17秒前
17秒前
飞快的雨寒完成签到,获得积分20
18秒前
kangkang完成签到,获得积分10
18秒前
19秒前
读者发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
aha发布了新的文献求助10
22秒前
春和景明完成签到,获得积分10
23秒前
孙闹闹发布了新的文献求助10
24秒前
无花果应助yuyu采纳,获得10
24秒前
坦率的傲芙完成签到,获得积分10
24秒前
WXP发布了新的文献求助10
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962475
求助须知:如何正确求助?哪些是违规求助? 3508497
关于积分的说明 11141410
捐赠科研通 3241254
什么是DOI,文献DOI怎么找? 1791445
邀请新用户注册赠送积分活动 872863
科研通“疑难数据库(出版商)”最低求助积分说明 803417