Identification of critical parameters influencing resistance performance of amphibious vehicles based on a SM-SA method

替代模型 主成分分析 参数统计 修剪 灵敏度(控制系统) 人工神经网络 工程类 非线性系统 控制理论(社会学) 还原(数学) 数学 数学优化 计算机科学 结构工程 人工智能 统计 量子力学 电子工程 物理 几何学 控制(管理)
作者
Zunfeng Du,Xuliang Mu,Haiming Zhu,Muxuan Han
出处
期刊:Ocean Engineering [Elsevier]
卷期号:258: 111770-111770 被引量:11
标识
DOI:10.1016/j.oceaneng.2022.111770
摘要

The design of high-speed amphibious vehicles needs to consider more factors compared to ships. The efficiency of design and optimization of parameters will not be realized in the absence of a feasible parametric model and design criterion. This paper provided a recognition method for the critical factors that significantly affect amphibious vehicles' resistance. Firstly, an initial parametric model of amphibious vehicles was established, and the resistance coefficients were acquired through numerical simulations. The principal component variables of initial data were extracted by principal component analysis (PCA). Then the functional relations between resistance and principal component variables were obtained respectively through artificial neural network (ANN) and nonlinear polynomial fitting (NPF). Next, two surrogate models were employed to analyze the sensitivity of the resistance to initial parameters. The identified sensitive parameters include the trim angle, loss of waterplane area, and some principal dimensions coefficients. The variation of parameters' sensitivity and their interactions were recognized when parameters are located in different regions. Ultimately, the resistance surrogate model was constructed with critical parameters, enabling the rapid optimization of parameter scheme. Compared with the initial scheme, the optimized scheme achieved significantly reduction of resistance. The extraction and optimization method for critical parameters in this paper provides reference for the design of amphibious vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的稚晴完成签到,获得积分20
刚刚
进击的PhD完成签到,获得积分10
1秒前
2秒前
单纯无声完成签到 ,获得积分10
2秒前
4秒前
西西弗斯完成签到,获得积分10
6秒前
李卓航发布了新的文献求助10
8秒前
领导范儿应助甜野采纳,获得10
8秒前
8秒前
10秒前
12秒前
13秒前
完美世界应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
李健应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
好好应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
好好应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
FashionBoy应助科研通管家采纳,获得10
14秒前
华仔应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
14秒前
好好应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
dew应助科研通管家采纳,获得50
14秒前
FU发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716