Identification of critical parameters influencing resistance performance of amphibious vehicles based on a SM-SA method

替代模型 主成分分析 参数统计 修剪 灵敏度(控制系统) 人工神经网络 工程类 非线性系统 控制理论(社会学) 还原(数学) 数学 数学优化 计算机科学 结构工程 人工智能 统计 物理 几何学 控制(管理) 量子力学 电子工程
作者
Zheng Du,Xuliang Mu,Haiming Zhu,Muxuan Han
出处
期刊:Ocean Engineering [Elsevier]
卷期号:258: 111770-111770 被引量:9
标识
DOI:10.1016/j.oceaneng.2022.111770
摘要

The design of high-speed amphibious vehicles needs to consider more factors compared to ships. The efficiency of design and optimization of parameters will not be realized in the absence of a feasible parametric model and design criterion. This paper provided a recognition method for the critical factors that significantly affect amphibious vehicles' resistance. Firstly, an initial parametric model of amphibious vehicles was established, and the resistance coefficients were acquired through numerical simulations. The principal component variables of initial data were extracted by principal component analysis (PCA). Then the functional relations between resistance and principal component variables were obtained respectively through artificial neural network (ANN) and nonlinear polynomial fitting (NPF). Next, two surrogate models were employed to analyze the sensitivity of the resistance to initial parameters. The identified sensitive parameters include the trim angle, loss of waterplane area, and some principal dimensions coefficients. The variation of parameters' sensitivity and their interactions were recognized when parameters are located in different regions. Ultimately, the resistance surrogate model was constructed with critical parameters, enabling the rapid optimization of parameter scheme. Compared with the initial scheme, the optimized scheme achieved significantly reduction of resistance. The extraction and optimization method for critical parameters in this paper provides reference for the design of amphibious vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hui完成签到,获得积分10
1秒前
1秒前
情怀应助Zinsanity采纳,获得10
1秒前
善良思真发布了新的文献求助10
2秒前
326361887发布了新的文献求助10
3秒前
4秒前
6秒前
liss发布了新的文献求助10
6秒前
7秒前
10秒前
善良思真完成签到,获得积分10
11秒前
肖善若发布了新的文献求助10
11秒前
dll发布了新的文献求助10
12秒前
Phuctanpct完成签到,获得积分10
13秒前
奇拉维特完成签到,获得积分10
14秒前
14秒前
模糊中正应助Polymer72采纳,获得30
14秒前
zhukaibo发布了新的文献求助10
15秒前
淡淡含海完成签到,获得积分20
18秒前
FashionBoy应助Yangjueming采纳,获得10
18秒前
18秒前
18秒前
19秒前
22秒前
柚子完成签到 ,获得积分10
23秒前
23秒前
24秒前
24秒前
美满疾应助周江阔采纳,获得10
25秒前
pppppttttt发布了新的文献求助10
27秒前
wsqg123发布了新的文献求助10
28秒前
30秒前
一蓑烟雨任平生应助huayu采纳,获得10
30秒前
33秒前
stokis03发布了新的文献求助10
33秒前
哈哈哈哈完成签到,获得积分10
34秒前
35秒前
赘婿应助尉迟冰蓝采纳,获得10
35秒前
36秒前
dll发布了新的文献求助10
38秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343799
求助须知:如何正确求助?哪些是违规求助? 2970866
关于积分的说明 8645553
捐赠科研通 2650942
什么是DOI,文献DOI怎么找? 1451565
科研通“疑难数据库(出版商)”最低求助积分说明 672145
邀请新用户注册赠送积分活动 661681