MallesNet: A multi-object assistance based network for brachial plexus segmentation in ultrasound images

计算机科学 分割 人工智能 特征(语言学) 臂丛神经 计算机视觉 特征提取 图像分割 模式识别(心理学) 医学 解剖 哲学 语言学
作者
Yi Ding,Qiqi Yang,Yiqian Wang,Dajiang Chen,Zhiguang Qin,Jian Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102511-102511 被引量:18
标识
DOI:10.1016/j.media.2022.102511
摘要

Ultrasound-guided injection is widely used to help anesthesiologists perform anesthesia in peripheral nerve blockade (PNB). However, it is a daunting task to accurately identify nerve structure in ultrasound images even for the experienced anesthesiologists. In this paper, a Multi-object assistance based Brachial Plexus Segmentation Network, named MallesNet, is proposed to improve the nerve segmentation performance in ultrasound image with the assistance of simultaneously segmenting its surrounding anatomical structures (e.g., muscle, vein, and artery). The MallesNet is designed by following the framework of Mask R-CNN to implement the multi object identification and segmentation. Moreover, a spatial local contrast feature (SLCF) extraction module is proposed to compute contrast features at different scales to effectively obtain useful features for small objects. And the self-attention gate (SAG) is also utilized to capture the spatial relationships in different channels and further re-weight the channels in feature maps by following the design of non-local operation and channel attention. Furthermore, the upsampling mechanism in original Feature Pyramid Network (FPN) is improved by adopting the transpose convolution and skip concatenation to fine-tune the feature maps. The Ultrasound Brachial Plexus Dataset (UBPD) is also proposed to support the research on brachial plexus segmentation, which consists of 1055 ultrasound images with four objects (i.e., nerve, artery, vein and muscle) and their corresponding label masks. Extensive experimental results using UBPD dataset demonstrate that MallesNet can achieve a better segmentation performance on nerves structure and also on surrounding structures in comparison to other competing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cly3397完成签到,获得积分10
刚刚
chao完成签到,获得积分10
1秒前
LBQ发布了新的文献求助10
1秒前
轻语完成签到 ,获得积分10
1秒前
小郭发布了新的文献求助10
2秒前
S月小小发布了新的文献求助10
3秒前
明镜完成签到,获得积分10
3秒前
说我我就噜噜脸完成签到,获得积分20
4秒前
魔幻白柏完成签到 ,获得积分10
4秒前
摸鱼真君发布了新的文献求助10
5秒前
科研通AI6应助快乐的小胖采纳,获得10
6秒前
彼方250521完成签到,获得积分10
8秒前
Hongyt发布了新的文献求助10
9秒前
呼和那日松完成签到,获得积分10
10秒前
11秒前
16秒前
16秒前
无花果应助XYY采纳,获得20
16秒前
12123ray发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
努力成为科研大佬完成签到,获得积分10
21秒前
潇笑完成签到,获得积分10
21秒前
说我我就噜噜脸关注了科研通微信公众号
22秒前
22秒前
在水一方应助石人采纳,获得10
23秒前
23秒前
24秒前
搞怪灯泡完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
26秒前
26秒前
27秒前
大成子发布了新的文献求助10
28秒前
Te完成签到 ,获得积分20
31秒前
深情安青应助逍遥客采纳,获得10
31秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694691
求助须知:如何正确求助?哪些是违规求助? 5098273
关于积分的说明 15214299
捐赠科研通 4851210
什么是DOI,文献DOI怎么找? 2602193
邀请新用户注册赠送积分活动 1554073
关于科研通互助平台的介绍 1511978