亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MallesNet: A multi-object assistance based network for brachial plexus segmentation in ultrasound images

计算机科学 分割 人工智能 特征(语言学) 臂丛神经 计算机视觉 特征提取 图像分割 模式识别(心理学) 医学 解剖 哲学 语言学
作者
Yi Ding,Qiqi Yang,Yiqian Wang,Dajiang Chen,Zhiguang Qin,Jian Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102511-102511 被引量:18
标识
DOI:10.1016/j.media.2022.102511
摘要

Ultrasound-guided injection is widely used to help anesthesiologists perform anesthesia in peripheral nerve blockade (PNB). However, it is a daunting task to accurately identify nerve structure in ultrasound images even for the experienced anesthesiologists. In this paper, a Multi-object assistance based Brachial Plexus Segmentation Network, named MallesNet, is proposed to improve the nerve segmentation performance in ultrasound image with the assistance of simultaneously segmenting its surrounding anatomical structures (e.g., muscle, vein, and artery). The MallesNet is designed by following the framework of Mask R-CNN to implement the multi object identification and segmentation. Moreover, a spatial local contrast feature (SLCF) extraction module is proposed to compute contrast features at different scales to effectively obtain useful features for small objects. And the self-attention gate (SAG) is also utilized to capture the spatial relationships in different channels and further re-weight the channels in feature maps by following the design of non-local operation and channel attention. Furthermore, the upsampling mechanism in original Feature Pyramid Network (FPN) is improved by adopting the transpose convolution and skip concatenation to fine-tune the feature maps. The Ultrasound Brachial Plexus Dataset (UBPD) is also proposed to support the research on brachial plexus segmentation, which consists of 1055 ultrasound images with four objects (i.e., nerve, artery, vein and muscle) and their corresponding label masks. Extensive experimental results using UBPD dataset demonstrate that MallesNet can achieve a better segmentation performance on nerves structure and also on surrounding structures in comparison to other competing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科学家完成签到 ,获得积分20
4秒前
ding应助lkk采纳,获得10
9秒前
悠哉发布了新的文献求助10
9秒前
小丸子和zz完成签到 ,获得积分10
11秒前
动听衬衫完成签到 ,获得积分20
11秒前
TiAmo完成签到 ,获得积分10
13秒前
GingerF应助呵呵酱采纳,获得50
14秒前
CipherSage应助悠哉采纳,获得10
20秒前
23秒前
27秒前
大龙哥886应助酷炫的平蝶采纳,获得10
28秒前
28秒前
踏实的大神完成签到,获得积分10
28秒前
悲凉的冬天完成签到,获得积分10
31秒前
小杨发布了新的文献求助10
34秒前
田様应助xiaowang采纳,获得10
34秒前
MchemG应助ceeray23采纳,获得20
35秒前
39秒前
41秒前
有趣的银完成签到,获得积分10
43秒前
ZR666888发布了新的文献求助10
43秒前
科研通AI6应助Yiyong采纳,获得20
47秒前
48秒前
缓慢的三颜完成签到,获得积分10
48秒前
深情安青应助科研通管家采纳,获得10
51秒前
黑翅鸢应助科研通管家采纳,获得10
51秒前
Ava应助我爱物理采纳,获得10
53秒前
茧茧完成签到 ,获得积分10
57秒前
momo给momo的求助进行了留言
59秒前
59秒前
asheng完成签到,获得积分10
1分钟前
科研通AI6应助机智的明雪采纳,获得10
1分钟前
1分钟前
金金完成签到 ,获得积分10
1分钟前
坦率的语芙完成签到,获得积分10
1分钟前
善学以致用应助帅气书白采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554672
求助须知:如何正确求助?哪些是违规求助? 4639324
关于积分的说明 14655924
捐赠科研通 4581173
什么是DOI,文献DOI怎么找? 2512637
邀请新用户注册赠送积分活动 1487389
关于科研通互助平台的介绍 1458262