MallesNet: A multi-object assistance based network for brachial plexus segmentation in ultrasound images

计算机科学 分割 人工智能 特征(语言学) 臂丛神经 计算机视觉 特征提取 图像分割 模式识别(心理学) 医学 解剖 哲学 语言学
作者
Yi Ding,Qiqi Yang,Yiqian Wang,Dajiang Chen,Zhiguang Qin,Jian Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102511-102511 被引量:18
标识
DOI:10.1016/j.media.2022.102511
摘要

Ultrasound-guided injection is widely used to help anesthesiologists perform anesthesia in peripheral nerve blockade (PNB). However, it is a daunting task to accurately identify nerve structure in ultrasound images even for the experienced anesthesiologists. In this paper, a Multi-object assistance based Brachial Plexus Segmentation Network, named MallesNet, is proposed to improve the nerve segmentation performance in ultrasound image with the assistance of simultaneously segmenting its surrounding anatomical structures (e.g., muscle, vein, and artery). The MallesNet is designed by following the framework of Mask R-CNN to implement the multi object identification and segmentation. Moreover, a spatial local contrast feature (SLCF) extraction module is proposed to compute contrast features at different scales to effectively obtain useful features for small objects. And the self-attention gate (SAG) is also utilized to capture the spatial relationships in different channels and further re-weight the channels in feature maps by following the design of non-local operation and channel attention. Furthermore, the upsampling mechanism in original Feature Pyramid Network (FPN) is improved by adopting the transpose convolution and skip concatenation to fine-tune the feature maps. The Ultrasound Brachial Plexus Dataset (UBPD) is also proposed to support the research on brachial plexus segmentation, which consists of 1055 ultrasound images with four objects (i.e., nerve, artery, vein and muscle) and their corresponding label masks. Extensive experimental results using UBPD dataset demonstrate that MallesNet can achieve a better segmentation performance on nerves structure and also on surrounding structures in comparison to other competing approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
任性蘑菇完成签到,获得积分10
1秒前
猪猪hero发布了新的文献求助10
2秒前
Estella完成签到,获得积分10
2秒前
小冯爱吃屁完成签到,获得积分10
2秒前
3秒前
周一完成签到 ,获得积分10
5秒前
FashionBoy应助李卓航采纳,获得10
6秒前
6秒前
10秒前
10秒前
天天快乐应助严天飞采纳,获得10
11秒前
11秒前
baqiuzunzhe发布了新的文献求助10
12秒前
孝顺的觅风完成签到 ,获得积分10
12秒前
13秒前
Cyuan发布了新的文献求助10
13秒前
JRZ完成签到,获得积分10
14秒前
14秒前
不想晚睡完成签到,获得积分10
14秒前
15秒前
Sylvia发布了新的文献求助50
15秒前
Lia_Yee完成签到,获得积分10
15秒前
16秒前
asdfqwer发布了新的文献求助10
16秒前
可爱的稚晴完成签到,获得积分20
16秒前
进击的PhD完成签到,获得积分10
17秒前
18秒前
单纯无声完成签到 ,获得积分10
18秒前
20秒前
西西弗斯完成签到,获得积分10
22秒前
李卓航发布了新的文献求助10
24秒前
领导范儿应助甜野采纳,获得10
24秒前
24秒前
26秒前
28秒前
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
领导范儿应助科研通管家采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716