MallesNet: A multi-object assistance based network for brachial plexus segmentation in ultrasound images

计算机科学 分割 人工智能 特征(语言学) 臂丛神经 计算机视觉 特征提取 图像分割 模式识别(心理学) 医学 解剖 哲学 语言学
作者
Yi Ding,Qiqi Yang,Yiqian Wang,Dajiang Chen,Zhiguang Qin,Jian Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:80: 102511-102511 被引量:18
标识
DOI:10.1016/j.media.2022.102511
摘要

Ultrasound-guided injection is widely used to help anesthesiologists perform anesthesia in peripheral nerve blockade (PNB). However, it is a daunting task to accurately identify nerve structure in ultrasound images even for the experienced anesthesiologists. In this paper, a Multi-object assistance based Brachial Plexus Segmentation Network, named MallesNet, is proposed to improve the nerve segmentation performance in ultrasound image with the assistance of simultaneously segmenting its surrounding anatomical structures (e.g., muscle, vein, and artery). The MallesNet is designed by following the framework of Mask R-CNN to implement the multi object identification and segmentation. Moreover, a spatial local contrast feature (SLCF) extraction module is proposed to compute contrast features at different scales to effectively obtain useful features for small objects. And the self-attention gate (SAG) is also utilized to capture the spatial relationships in different channels and further re-weight the channels in feature maps by following the design of non-local operation and channel attention. Furthermore, the upsampling mechanism in original Feature Pyramid Network (FPN) is improved by adopting the transpose convolution and skip concatenation to fine-tune the feature maps. The Ultrasound Brachial Plexus Dataset (UBPD) is also proposed to support the research on brachial plexus segmentation, which consists of 1055 ultrasound images with four objects (i.e., nerve, artery, vein and muscle) and their corresponding label masks. Extensive experimental results using UBPD dataset demonstrate that MallesNet can achieve a better segmentation performance on nerves structure and also on surrounding structures in comparison to other competing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yolo发布了新的文献求助10
1秒前
张先森发布了新的文献求助10
3秒前
3秒前
4秒前
浮游应助ambernameswu采纳,获得10
5秒前
zzz完成签到,获得积分10
6秒前
124完成签到,获得积分10
6秒前
葛力发布了新的文献求助30
8秒前
Hello应助山槐采纳,获得10
9秒前
illusion完成签到,获得积分10
10秒前
妥妥酱完成签到,获得积分10
10秒前
10秒前
Yolo完成签到,获得积分10
10秒前
深海大菠萝完成签到,获得积分10
11秒前
11秒前
15秒前
sss2021完成签到,获得积分10
17秒前
金土豆的福袋子给金土豆的福袋子的求助进行了留言
18秒前
小鱼发布了新的文献求助10
18秒前
小哈发布了新的文献求助10
18秒前
li发布了新的文献求助10
19秒前
虚心焦完成签到 ,获得积分10
21秒前
Jasper应助Hoshi采纳,获得10
21秒前
不倦应助可可爱爱毛毛采纳,获得10
21秒前
IT小师弟完成签到,获得积分10
22秒前
NexusExplorer应助10采纳,获得10
24秒前
阿升完成签到,获得积分10
25秒前
帅气的雅青完成签到,获得积分10
25秒前
林茵完成签到,获得积分10
26秒前
后来发布了新的文献求助10
27秒前
小龚小龚完成签到 ,获得积分10
27秒前
28秒前
阿升发布了新的文献求助10
29秒前
shinble发布了新的文献求助20
31秒前
虫子发布了新的文献求助10
32秒前
三百一十四完成签到 ,获得积分10
32秒前
脑洞疼应助wang5945采纳,获得10
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
研究啥应助科研通管家采纳,获得10
33秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225595
求助须知:如何正确求助?哪些是违规求助? 4397219
关于积分的说明 13686133
捐赠科研通 4261786
什么是DOI,文献DOI怎么找? 2338712
邀请新用户注册赠送积分活动 1336095
关于科研通互助平台的介绍 1292013