亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MallesNet: A multi-object assistance based network for brachial plexus segmentation in ultrasound images

计算机科学 分割 人工智能 特征(语言学) 臂丛神经 计算机视觉 特征提取 图像分割 模式识别(心理学) 医学 解剖 哲学 语言学
作者
Yi Ding,Qiqi Yang,Yiqian Wang,Dajiang Chen,Zhiguang Qin,Jian Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102511-102511 被引量:16
标识
DOI:10.1016/j.media.2022.102511
摘要

Ultrasound-guided injection is widely used to help anesthesiologists perform anesthesia in peripheral nerve blockade (PNB). However, it is a daunting task to accurately identify nerve structure in ultrasound images even for the experienced anesthesiologists. In this paper, a Multi-object assistance based Brachial Plexus Segmentation Network, named MallesNet, is proposed to improve the nerve segmentation performance in ultrasound image with the assistance of simultaneously segmenting its surrounding anatomical structures (e.g., muscle, vein, and artery). The MallesNet is designed by following the framework of Mask R-CNN to implement the multi object identification and segmentation. Moreover, a spatial local contrast feature (SLCF) extraction module is proposed to compute contrast features at different scales to effectively obtain useful features for small objects. And the self-attention gate (SAG) is also utilized to capture the spatial relationships in different channels and further re-weight the channels in feature maps by following the design of non-local operation and channel attention. Furthermore, the upsampling mechanism in original Feature Pyramid Network (FPN) is improved by adopting the transpose convolution and skip concatenation to fine-tune the feature maps. The Ultrasound Brachial Plexus Dataset (UBPD) is also proposed to support the research on brachial plexus segmentation, which consists of 1055 ultrasound images with four objects (i.e., nerve, artery, vein and muscle) and their corresponding label masks. Extensive experimental results using UBPD dataset demonstrate that MallesNet can achieve a better segmentation performance on nerves structure and also on surrounding structures in comparison to other competing approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
15秒前
16秒前
科研通AI2S应助迷路匪采纳,获得10
23秒前
32秒前
己凡发布了新的文献求助10
36秒前
鲍文启完成签到 ,获得积分10
43秒前
科目三应助Nacy采纳,获得10
52秒前
1分钟前
Nacy发布了新的文献求助10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
yangguang2000应助科研通管家采纳,获得20
1分钟前
1分钟前
己凡发布了新的文献求助10
1分钟前
Jigsaw发布了新的文献求助30
1分钟前
小马甲应助Nacy采纳,获得10
1分钟前
2分钟前
今后应助wjs0406采纳,获得10
2分钟前
Nacy发布了新的文献求助10
2分钟前
2分钟前
己凡发布了新的文献求助10
2分钟前
2分钟前
2分钟前
wjs0406发布了新的文献求助10
2分钟前
SciGPT应助ForeverAE采纳,获得10
2分钟前
wjs0406完成签到,获得积分10
2分钟前
丘比特应助Nacy采纳,获得10
2分钟前
2分钟前
yuan完成签到,获得积分10
3分钟前
Nacy发布了新的文献求助10
3分钟前
Wing完成签到 ,获得积分10
3分钟前
流白发布了新的文献求助20
3分钟前
try完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
yangguang2000应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
yangguang2000应助科研通管家采纳,获得20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265467
求助须知:如何正确求助?哪些是违规求助? 2905505
关于积分的说明 8333941
捐赠科研通 2575798
什么是DOI,文献DOI怎么找? 1400130
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532