Ant colony optimization equipped with an ensemble of heuristics through multi-criteria decision making: A case study in ensemble feature selection

启发式 特征选择 计算机科学 蚁群优化算法 选择(遗传算法) 人工智能 特征(语言学) 启发式 机器学习 元启发式 数学优化 数学 语言学 操作系统 哲学
作者
Amin Hashemi,Mehdi Joodaki,Nazanin Zahra Joodaki,Mohammad Bagher Dowlatshahi
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:124: 109046-109046 被引量:41
标识
DOI:10.1016/j.asoc.2022.109046
摘要

Ant Colony Optimization (ACO) is a probabilistic and approximation metaheuristic algorithm to solve complex combinatorial optimization problems. ACO algorithm is inspired by the behavior of a colony of real ants and uses their pheromone trials to find optimal solutions. Since the beginning of the ACO algorithm, many researchers have tried to improve the performance and stability of the algorithm by using various methodologies. Resolving the exploitation/exploration dilemma by an efficient procedure is critical in improving the ACO. One of the critical parameters in ACO is selecting the heuristic that can affect the movements of ants. So far, the use of several heuristics in ACO has not been studied. We believe that using multiple heuristics instead of a single heuristic can improve the ACO algorithm. For this matter, we have proposed an ACO algorithm based on the ensemble of heuristics using a Multi-Criteria Decision-Making (MCDM) procedure. It means that the movement of the ants is defined based on the judgment of multiple experts (criteria). The idea is based on the hypothesis that different heuristics give us more information about the subsequent nodes, and the variety of these methods examines the different aspects to achieve better and optimal solutions in ACO. In this paper, we have applied our proposed method to the ensemble feature selection task to evaluate the performance of the proposed method. Blending several feature selection methods is regular to tackle the feature selection problem, and also efficiently combining feature selection methods is still challenging. Some well-known ensemble feature selection and primary feature selection methods have been compared with Ant-MCDM on twelve datasets to evaluate the performance of the proposed method in the feature selection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郑郑得富完成签到 ,获得积分20
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
调皮的海之完成签到,获得积分10
3秒前
王开晙完成签到,获得积分10
3秒前
3秒前
5秒前
6秒前
雪儿完成签到,获得积分10
6秒前
王开晙发布了新的文献求助10
6秒前
HJL发布了新的文献求助30
8秒前
du发布了新的文献求助20
8秒前
所所应助不如看海采纳,获得10
8秒前
赵坤煊完成签到 ,获得积分0
8秒前
NexusExplorer应助Dain采纳,获得10
9秒前
Apocalypse_zjz完成签到,获得积分10
10秒前
11秒前
盛夏完成签到,获得积分10
11秒前
qianlan发布了新的文献求助10
11秒前
paper发布了新的文献求助50
11秒前
阿斯特雷加完成签到,获得积分20
13秒前
bofu发布了新的文献求助10
13秒前
13秒前
emmm发布了新的文献求助10
15秒前
博修发布了新的文献求助10
16秒前
17秒前
流浪完成签到,获得积分10
17秒前
18秒前
qianlan完成签到,获得积分10
18秒前
副本完成签到 ,获得积分10
18秒前
云雨完成签到 ,获得积分10
19秒前
bofu发布了新的文献求助10
19秒前
run发布了新的文献求助10
20秒前
不如看海发布了新的文献求助10
22秒前
dreamwalk完成签到 ,获得积分10
23秒前
田様应助yuting采纳,获得10
25秒前
科研通AI2S应助博修采纳,获得10
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150