已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ant colony optimization equipped with an ensemble of heuristics through multi-criteria decision making: A case study in ensemble feature selection

启发式 特征选择 计算机科学 蚁群优化算法 选择(遗传算法) 人工智能 特征(语言学) 启发式 机器学习 元启发式 数学优化 数学 哲学 语言学 操作系统
作者
Amin Hashemi,Mehdi Joodaki,Nazanin Zahra Joodaki,Mohammad Bagher Dowlatshahi
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:124: 109046-109046 被引量:41
标识
DOI:10.1016/j.asoc.2022.109046
摘要

Ant Colony Optimization (ACO) is a probabilistic and approximation metaheuristic algorithm to solve complex combinatorial optimization problems. ACO algorithm is inspired by the behavior of a colony of real ants and uses their pheromone trials to find optimal solutions. Since the beginning of the ACO algorithm, many researchers have tried to improve the performance and stability of the algorithm by using various methodologies. Resolving the exploitation/exploration dilemma by an efficient procedure is critical in improving the ACO. One of the critical parameters in ACO is selecting the heuristic that can affect the movements of ants. So far, the use of several heuristics in ACO has not been studied. We believe that using multiple heuristics instead of a single heuristic can improve the ACO algorithm. For this matter, we have proposed an ACO algorithm based on the ensemble of heuristics using a Multi-Criteria Decision-Making (MCDM) procedure. It means that the movement of the ants is defined based on the judgment of multiple experts (criteria). The idea is based on the hypothesis that different heuristics give us more information about the subsequent nodes, and the variety of these methods examines the different aspects to achieve better and optimal solutions in ACO. In this paper, we have applied our proposed method to the ensemble feature selection task to evaluate the performance of the proposed method. Blending several feature selection methods is regular to tackle the feature selection problem, and also efficiently combining feature selection methods is still challenging. Some well-known ensemble feature selection and primary feature selection methods have been compared with Ant-MCDM on twelve datasets to evaluate the performance of the proposed method in the feature selection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌辞柚完成签到 ,获得积分10
2秒前
徐徐图之完成签到 ,获得积分10
2秒前
善良的嫣完成签到 ,获得积分10
3秒前
5秒前
5秒前
6秒前
Owen应助zb采纳,获得10
6秒前
Alimove完成签到,获得积分10
8秒前
8秒前
zcm1999完成签到,获得积分10
9秒前
kk完成签到 ,获得积分10
10秒前
温迪发布了新的文献求助30
10秒前
上官若男应助Fiona采纳,获得10
11秒前
Alimove发布了新的文献求助30
12秒前
hikari发布了新的文献求助10
12秒前
夏子发布了新的文献求助10
13秒前
FX1688完成签到 ,获得积分10
13秒前
13秒前
端庄亦巧完成签到 ,获得积分10
14秒前
11_aa完成签到 ,获得积分10
14秒前
刘玉欣完成签到 ,获得积分10
14秒前
THEO完成签到,获得积分10
15秒前
叙事医学完成签到,获得积分10
15秒前
Sunbrust完成签到 ,获得积分10
16秒前
自知完成签到 ,获得积分10
16秒前
17秒前
暗号完成签到 ,获得积分0
18秒前
18秒前
燕燕完成签到,获得积分10
19秒前
lwm不想看文献完成签到 ,获得积分10
19秒前
Leviathan完成签到 ,获得积分0
20秒前
怕黑行恶发布了新的文献求助10
20秒前
牛牛完成签到 ,获得积分10
21秒前
叙事医学发布了新的文献求助10
21秒前
夏子完成签到,获得积分10
21秒前
小柯基学从零学起完成签到 ,获得积分10
23秒前
舒心飞珍发布了新的文献求助10
23秒前
凡华完成签到 ,获得积分10
23秒前
Nn完成签到 ,获得积分10
24秒前
小二郎应助Alimove采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253082
求助须知:如何正确求助?哪些是违规求助? 4416579
关于积分的说明 13750145
捐赠科研通 4288834
什么是DOI,文献DOI怎么找? 2353101
邀请新用户注册赠送积分活动 1349865
关于科研通互助平台的介绍 1309581