Ant colony optimization equipped with an ensemble of heuristics through multi-criteria decision making: A case study in ensemble feature selection

启发式 特征选择 计算机科学 蚁群优化算法 选择(遗传算法) 人工智能 特征(语言学) 启发式 机器学习 元启发式 数学优化 数学 哲学 语言学 操作系统
作者
Amin Hashemi,Mehdi Joodaki,Nazanin Zahra Joodaki,Mohammad Bagher Dowlatshahi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:124: 109046-109046 被引量:41
标识
DOI:10.1016/j.asoc.2022.109046
摘要

Ant Colony Optimization (ACO) is a probabilistic and approximation metaheuristic algorithm to solve complex combinatorial optimization problems. ACO algorithm is inspired by the behavior of a colony of real ants and uses their pheromone trials to find optimal solutions. Since the beginning of the ACO algorithm, many researchers have tried to improve the performance and stability of the algorithm by using various methodologies. Resolving the exploitation/exploration dilemma by an efficient procedure is critical in improving the ACO. One of the critical parameters in ACO is selecting the heuristic that can affect the movements of ants. So far, the use of several heuristics in ACO has not been studied. We believe that using multiple heuristics instead of a single heuristic can improve the ACO algorithm. For this matter, we have proposed an ACO algorithm based on the ensemble of heuristics using a Multi-Criteria Decision-Making (MCDM) procedure. It means that the movement of the ants is defined based on the judgment of multiple experts (criteria). The idea is based on the hypothesis that different heuristics give us more information about the subsequent nodes, and the variety of these methods examines the different aspects to achieve better and optimal solutions in ACO. In this paper, we have applied our proposed method to the ensemble feature selection task to evaluate the performance of the proposed method. Blending several feature selection methods is regular to tackle the feature selection problem, and also efficiently combining feature selection methods is still challenging. Some well-known ensemble feature selection and primary feature selection methods have been compared with Ant-MCDM on twelve datasets to evaluate the performance of the proposed method in the feature selection task.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
七寻发布了新的文献求助10
1秒前
shining发布了新的文献求助10
2秒前
冲冲冲!发布了新的文献求助10
2秒前
兔BF发布了新的文献求助10
3秒前
妞妞妈完成签到,获得积分10
3秒前
wrimer发布了新的文献求助10
3秒前
寻悦完成签到,获得积分10
3秒前
无花果应助charih采纳,获得10
4秒前
yls123发布了新的文献求助10
4秒前
科研01完成签到,获得积分10
4秒前
wbr完成签到,获得积分10
4秒前
5秒前
5秒前
打打应助Aurora采纳,获得10
5秒前
5秒前
5秒前
小二郎应助黑沧浪亭采纳,获得10
5秒前
瓜瓜完成签到,获得积分20
5秒前
6秒前
点点完成签到 ,获得积分10
6秒前
6秒前
anya完成签到,获得积分10
6秒前
6秒前
vivre223发布了新的文献求助10
6秒前
kk君发布了新的文献求助10
6秒前
妞妞妈发布了新的文献求助10
6秒前
7秒前
7秒前
可以2发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助30
8秒前
mashirodesuki发布了新的文献求助10
8秒前
寻悦发布了新的文献求助10
8秒前
FL完成签到 ,获得积分0
8秒前
9秒前
我是犇犇发布了新的文献求助10
9秒前
bkagyin应助熊有鹏采纳,获得10
9秒前
北天极完成签到 ,获得积分10
10秒前
dbq发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728057
求助须知:如何正确求助?哪些是违规求助? 5311160
关于积分的说明 15312957
捐赠科研通 4875318
什么是DOI,文献DOI怎么找? 2618704
邀请新用户注册赠送积分活动 1568361
关于科研通互助平台的介绍 1525003