Ant colony optimization equipped with an ensemble of heuristics through multi-criteria decision making: A case study in ensemble feature selection

启发式 特征选择 计算机科学 蚁群优化算法 选择(遗传算法) 人工智能 特征(语言学) 启发式 机器学习 元启发式 数学优化 数学 哲学 语言学 操作系统
作者
Amin Hashemi,Mehdi Joodaki,Nazanin Zahra Joodaki,Mohammad Bagher Dowlatshahi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:124: 109046-109046 被引量:41
标识
DOI:10.1016/j.asoc.2022.109046
摘要

Ant Colony Optimization (ACO) is a probabilistic and approximation metaheuristic algorithm to solve complex combinatorial optimization problems. ACO algorithm is inspired by the behavior of a colony of real ants and uses their pheromone trials to find optimal solutions. Since the beginning of the ACO algorithm, many researchers have tried to improve the performance and stability of the algorithm by using various methodologies. Resolving the exploitation/exploration dilemma by an efficient procedure is critical in improving the ACO. One of the critical parameters in ACO is selecting the heuristic that can affect the movements of ants. So far, the use of several heuristics in ACO has not been studied. We believe that using multiple heuristics instead of a single heuristic can improve the ACO algorithm. For this matter, we have proposed an ACO algorithm based on the ensemble of heuristics using a Multi-Criteria Decision-Making (MCDM) procedure. It means that the movement of the ants is defined based on the judgment of multiple experts (criteria). The idea is based on the hypothesis that different heuristics give us more information about the subsequent nodes, and the variety of these methods examines the different aspects to achieve better and optimal solutions in ACO. In this paper, we have applied our proposed method to the ensemble feature selection task to evaluate the performance of the proposed method. Blending several feature selection methods is regular to tackle the feature selection problem, and also efficiently combining feature selection methods is still challenging. Some well-known ensemble feature selection and primary feature selection methods have been compared with Ant-MCDM on twelve datasets to evaluate the performance of the proposed method in the feature selection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bill应助克林沙星采纳,获得10
2秒前
情怀应助丿小智灬采纳,获得10
2秒前
和平完成签到 ,获得积分10
3秒前
3秒前
4秒前
CDN完成签到,获得积分10
5秒前
所所应助WAY采纳,获得30
5秒前
今后应助green采纳,获得10
5秒前
刘欢发布了新的文献求助10
6秒前
lysun发布了新的文献求助10
8秒前
9秒前
9秒前
张切一发布了新的文献求助10
9秒前
10秒前
沉默的稀发布了新的文献求助30
11秒前
11秒前
11秒前
13秒前
王梦瑶发布了新的文献求助10
14秒前
酷炫觅松发布了新的文献求助10
14秒前
WAY完成签到,获得积分10
14秒前
彭于彦祖应助一枝杷枇采纳,获得20
14秒前
15秒前
16秒前
16秒前
彭于晏应助bububusbu采纳,获得10
16秒前
17秒前
科研通AI2S应助默默冷亦采纳,获得10
17秒前
17秒前
longavailable完成签到,获得积分10
21秒前
丿小智灬发布了新的文献求助10
21秒前
lxlcx发布了新的文献求助10
21秒前
清秀成威应助程风破浪采纳,获得10
21秒前
23秒前
坦率的匪应助含糊的晓凡采纳,获得20
24秒前
Ava应助Cc采纳,获得10
26秒前
后知后觉完成签到,获得积分10
26秒前
后山种仙草完成签到,获得积分10
26秒前
青栀完成签到,获得积分10
26秒前
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155997
求助须知:如何正确求助?哪些是违规求助? 2807353
关于积分的说明 7872795
捐赠科研通 2465725
什么是DOI,文献DOI怎么找? 1312328
科研通“疑难数据库(出版商)”最低求助积分说明 630049
版权声明 601905