A review of ultrasonic sensing and machine learning methods to monitor industrial processes

可解释性 机器学习 计算机科学 超参数 人工智能 特征选择 超声波传感器 过程(计算) 声学 操作系统 物理
作者
Alexander L. Bowler,Michael P. Pound,Nicholas J. Watson
出处
期刊:Ultrasonics [Elsevier]
卷期号:124: 106776-106776 被引量:55
标识
DOI:10.1016/j.ultras.2022.106776
摘要

Supervised machine learning techniques are increasingly being combined with ultrasonic sensor measurements owing to their strong performance. These techniques also offer advantages over calibration procedures of more complex fitting, improved generalisation, reduced development time, ability for continuous retraining, and the correlation of sensor data to important process information. However, their implementation requires expertise to extract and select appropriate features from the sensor measurements as model inputs, select the type of machine learning algorithm to use, and find a suitable set of model hyperparameters. The aim of this article is to facilitate implementation of machine learning techniques in combination with ultrasonic measurements for in-line and on-line monitoring of industrial processes and other similar applications. The article first reviews the use of ultrasonic sensors for monitoring processes, before reviewing the combination of ultrasonic measurements and machine learning. We include literature from other sectors such as structural health monitoring. This review covers feature extraction, feature selection, algorithm choice, hyperparameter selection, data augmentation, domain adaptation, semi-supervised learning and machine learning interpretability. Finally, recommendations for applying machine learning to the reviewed processes are made.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
张姣姣完成签到,获得积分10
1秒前
xiyueQAQ完成签到,获得积分10
1秒前
2秒前
2秒前
英勇冬瓜完成签到,获得积分10
2秒前
2秒前
2秒前
打打应助DrLin采纳,获得10
2秒前
怡然花卷发布了新的文献求助10
3秒前
3秒前
葡萄小伊ovo完成签到 ,获得积分10
3秒前
3秒前
呆萌菲音发布了新的文献求助10
3秒前
啦啦啦123发布了新的文献求助10
3秒前
4秒前
深情安青应助yu采纳,获得10
4秒前
Zenobia完成签到,获得积分10
4秒前
在水一方应助曾无忧采纳,获得10
4秒前
xiaoxiaoxiao完成签到,获得积分10
4秒前
笨笨山芙完成签到 ,获得积分10
4秒前
5秒前
李爱国应助联合工程采纳,获得10
5秒前
5秒前
顾矜应助Lze采纳,获得10
6秒前
6秒前
6秒前
7秒前
7秒前
李爱国应助duoduo采纳,获得10
7秒前
科研通AI6应助郭露露采纳,获得10
7秒前
Jasper应助Oil采纳,获得10
7秒前
领导范儿应助dhppp采纳,获得10
8秒前
8秒前
善良耳机完成签到,获得积分10
8秒前
8秒前
8秒前
动听皮带发布了新的文献求助30
8秒前
孟寐以求发布了新的文献求助20
8秒前
lyu完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017