亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adversarial domain translation networks for integrating large-scale atlas-level single-cell datasets

计算机科学 可扩展性 地图集(解剖学) 对抗制 领域(数学分析) 数据集成 航程(航空) 翻译(生物学) 人工智能 数据挖掘 生物 数据库 复合材料 数学分析 基因 信使核糖核酸 数学 材料科学 生物化学 古生物学
作者
Jia Zhao,Gefei Wang,Jingsi Ming,Zhixiang Lin,Yang Wang,Snigdha Agarwal,Aditi Agrawal,Ahmad Al‐Moujahed,Alina Alam,Megan A. Albertelli,Paul Allegakoen,Thomas H. Ambrosi,Stephen Chang,Steven E. Artandi,Fabienne Aujard,Kyle Awayan,Ankit S. Baghel,Isaac Bakerman,Trygve E. Bakken,Jalal Baruni,Philip A. Beachy,Biter Bilen,Olga Botvinnik,Scott D. Boyd,Deviana Burhan,Kerriann M. Casey,Charles K. F. Chan,Charles Chang,Stephen Chang,Chen Ming,Michael F. Clarke,Sheela Crasta,Rebecca N. Culver,Jessica D’Addabbo,Spyros Darmanis,Roozbeh Dehghannasiri,Song‐Lin Ding,Connor V. Duffy,Jacques Epelbaum,F. Hernán Espinoza,Camille Ezran,Jean Farup,James E. Ferrell,Hannah K. Frank,Margaret T. Fuller,Astrid Gillich,Elias Godoy,Dita Gratzinger,Lisbeth A. Guethlein,Yan Hang,Kazuteru Hasegawa,Rebecca D. Hodge,Malachia Hoover,Franklin W. Huang,Kerwyn Casey Huang,Shelly Huynh,Taichi Isobe,Carly Israel,SoRi Jang,Qiuyu Jing,Robert C. Jones,Jengmin Kang,Caitlin J. Karanewsky,Jim Karkanias,Justus M. Kebschull,Aaron M. Kershner,Lily Kim,Seung K. Kim,E. Christopher Kirk,Winston Koh,Silvana Konermann,William Kong,Mark A. Krasnow,Christin S. Kuo,Corinne Lautier,Song Eun Lee,Ed S. Lein,Rebecca Lewis,Peng Li,Shengda Lin,Shixuan Liu,Yin Liu,Gabriel B. Loeb,Jonathan Z. Long,Wan-Jin Lu,Katherine L. Lucot,Liqun Luo,Aaron McGeever,Ross J. Metzger,Jingsi Ming,Tom Montine,Antoine de Morrée,Maurizio Morri,Karim Mrouj,Shravani Mukherjee,Ahmad N. Nabhan,Saba Nafees,Norma Neff,Patrick Neuhöfer,Patricia K. Nguyen,Jennifer Okamoto,Julia Olivieri,Youcef Ouadah,Honor Paine,Peter Parham,Jozeph L. Pendleton,Lolita Penland,Eus J.W. Van Someren,Angela Oliveira Pisco,Zhen Qi,Stephen R. Quake,Ute Radespiel,Thomas A. Rando,Hajanirina Noëline Ravelonjanahary,Andriamahery Razafindrakoto,Julia Salzman,Nicholas Schaum,Robert Schopler,Bronwyn Scott,Liza J. Shapiro,Ho‐Su Sin,Rahul Sinha,Rene Sit,Geoff Stanley,Lubert Stryer,Varun Ramanan Subramaniam,Aditi Swarup,Weilun Tan,Alexander J. Tarashansky,Aris Taychameekiatchai,Jérémy Terrien,Kyle J. Travaglini,Andoni Urtasun,Sivakamasundari,Avin Veerakumar,Venkata Naga Pranathi Vemuri,Jean‐Michel Verdier,Iwijn De Vlaminck,Douglas Vollrath,Bo Wang,Bruce Wang,Gefei Wang,Roozbeh Dehghannasiri,Sheng Wang,James T. Webber,H Weinstein,Irving L. Weissman,Amanda L. Wiggenhorn,Cathy V. Williams,Patricia C. Wright,Albert Y. Wu,Angela Ruohao Wu,Tony Wyss‐Coray,Xiang Bao,Yan Jia,Can Yang,Ji-Qin Yang,Anne D. Yoder,Brian Yu,Andrea R. Yung,Yue Zhang,Jia Zhao,Zicheng Zhao,Angela Ruohao Wu,Can Yang
出处
期刊:Nature Computational Science [Springer Nature]
卷期号:2 (5): 317-330 被引量:16
标识
DOI:10.1038/s43588-022-00251-y
摘要

The rapid emergence of large-scale atlas-level single-cell RNA-seq datasets presents remarkable opportunities for broad and deep biological investigations through integrative analyses. However, harmonizing such datasets requires integration approaches to be not only computationally scalable, but also capable of preserving a wide range of fine-grained cell populations. We have created Portal, a unified framework of adversarial domain translation to learn harmonized representations of datasets. When compared to other state-of-the-art methods, Portal achieves better performance for preserving biological variation during integration, while achieving the integration of millions of cells, in minutes, with low memory consumption. We show that Portal is widely applicable to integrating datasets across different samples, platforms and data types. We also apply Portal to the integration of cross-species datasets with limited shared information among them, elucidating biological insights into the similarities and divergences in the spermatogenesis process among mouse, macaque and human. An adversarial domain translation framework is presented for scalable integration of single-cell atlases across samples, technical platforms, data modalities and species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
凌晨洋发布了新的文献求助10
4秒前
百里盼山发布了新的文献求助10
8秒前
赘婿应助vidya采纳,获得10
9秒前
王企鹅发布了新的文献求助10
20秒前
Rabbithouse完成签到,获得积分10
52秒前
1分钟前
janice发布了新的文献求助10
1分钟前
王企鹅完成签到,获得积分10
1分钟前
乐乐应助janice采纳,获得10
1分钟前
hugeyoung完成签到,获得积分10
1分钟前
Mark完成签到 ,获得积分10
1分钟前
月5114完成签到 ,获得积分10
1分钟前
希望天下0贩的0应助xj采纳,获得10
2分钟前
vidya关注了科研通微信公众号
2分钟前
2分钟前
vidya发布了新的文献求助10
2分钟前
2分钟前
haha发布了新的文献求助10
2分钟前
cc发布了新的文献求助10
3分钟前
笨笨十三完成签到 ,获得积分10
3分钟前
俭朴蜜蜂完成签到 ,获得积分10
3分钟前
3分钟前
Starr44发布了新的文献求助10
3分钟前
欣喜的代容完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
xj发布了新的文献求助10
3分钟前
3分钟前
见鹰完成签到,获得积分10
3分钟前
54123发布了新的文献求助30
3分钟前
见鹰发布了新的文献求助10
3分钟前
sheh发布了新的文献求助10
4分钟前
54123完成签到,获得积分10
4分钟前
科研通AI2S应助sheh采纳,获得10
4分钟前
Starr44完成签到,获得积分10
4分钟前
鹏虫虫发布了新的文献求助10
4分钟前
华仔应助haha采纳,获得30
4分钟前
杳鸢应助mmyhn采纳,获得50
4分钟前
杳鸢应助mmyhn采纳,获得50
5分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150515
求助须知:如何正确求助?哪些是违规求助? 2801948
关于积分的说明 7845974
捐赠科研通 2459264
什么是DOI,文献DOI怎么找? 1309180
科研通“疑难数据库(出版商)”最低求助积分说明 628683
版权声明 601748